
A Short Introduction to R

Jochen Voss

January 27, 2020

Copyright c© 2020 Jochen Voss <J.Voss@leeds.ac.uk>

mailto:J.Voss@leeds.ac.uk

Contents

1 The Basics 1
1.1 Commands . 1
1.2 Variables . 2

2 Loading Data into R 5
2.1 Importing CSV Files . 5
2.2 Importing Microsoft Excel Files . 5
2.3 Checking the Imported Data . 6
2.4 Common Problems . 7

3 Data Types in R 9
3.1 Numerical Data . 9

3.1.1 Numbers . 9
3.1.2 Vectors . 9
3.1.3 Matrices . 10

3.2 Categorical Data . 11
3.3 Text Data . 11
3.4 Data Frames . 11
3.5 Selecting Columns/Variables . 12
3.6 Selecting Rows/Individuals . 12

4 Working with Data 15
4.1 Mathematical Operations . 15
4.2 Summary Statistics for Numerical Data 15
4.3 Contingency Tables . 16
4.4 Counting . 17
4.5 Correlation and Covariance . 17

5 Creating Plots 19
5.1 Scatter Plots . 19
5.2 Line Plots . 19
5.3 Histograms . 20
5.4 Box Plots . 21

6 Linear Regression 23
6.1 Fitting a Model . 23
6.2 Working with the fitted model . 24
6.3 Making predictions . 25

A Important R Commands 27

iii

iv

Chapter 1

The Basics

1.1 Commands

R is a programming language, like Python and Java, but with a focus on statistical
data analysis. The biggest advantage of R is that it has built-in knowledge of many
statistical concepts and methods. The language is also good at producing scientific
plots.

The way to interact with R is by ‘executing’ commands which tell R what to do.
These commands can either be typed directly, or stored in a file and then later be
loaded straight from this file. Here are some examples of R executing commands:

> 1 + 2 + 3
[1] 6
> 2 * (3 + 4)
[1] 14
> c(1, 2, 3, 4, 5, 6)
[1] 1 2 3 4 5 6
> mean(c(1, 2, 3, 4, 5, 6))
[1] 3.5

The first commands, 1 + 2 + 3 and 2 * (3 + 4), show that basic arithmetic in R
looks very much like it does in school. The next command in the example above,
c(1, 2, 3, 4, 5, 6), illustrates how vectors are written in R. For this command,
the name of the command is ‘c’ and 1, 2, 3, 4, 5, 6 are arguments of the com-
mand, i.e. values which determine what the command actually does. In this case, the
c() command builds a vector, and the arguments 1, 2, 3, 4, 5, 6 specify the con-
tents of the vector. The result is a representation of the vector (1, 2, 3, 4, 5, 6) ∈ R6

in R. Commands like this, which take arguments in brackets, are called functions.
The final command in the list computes the average of the elements of the vector
(1, 2, 3, 4, 5, 6). There are many different functions available in R, too many to make
a complete list. An alphabetical list of important R functions can be found in ap-
pendix A.

Often, commands must be combined to achieve the desired effect. A simple case of
this is shown in the last command of the example. This command uses the function
mean() to compute the average of the elements of a vector. This function needs an
argument which specifies the vector to use, and in the example this argument consists
of a second command, c(1, 2, 3, 4, 5, 6), to construct the required vector. Such
nested commands are often best read ‘inside out’: first c() constructs the vector, and
the mean() computes the average of the elements.

The main hurdle in learning to use R is the need to learn which commands to use
for which task, and how these commands works. The most important thing to keep
in mind is, that you won’t need to learn about all commands to successfully use R.
Basic tasks can be solved using a small subset of commands, maybe two dozens in
total. The following chapters systematically explain the commands needed to perform
typical tasks in R.

1

Finally, one important function in R is help(), which shows the documentation
for any function given as an argument. For example, the command

help(plot)

shows the documentation for the plot() command.

1.2 Variables

In R you can use variables to store intermediate results of computations. The following
transscript illustrates the use of variables:

> a <- 1
> b <- 7
> c <- 2
> root1 <- (-b + sqrt(b^2 - 4*a*c)) / (2*a)
> root2 <- (-b - sqrt(b^2 - 4*a*c)) / (2*a)
> root1
[1] -0.2984379
> root2
[1] -6.701562
> root1*root2
[1] 2

You can freely choose names for your variables, consisting of letters, digits and the dot
character (but starting with a letter), and you can assign values to variables using the
assignment operator <- (you can also write = instead of <-). After a value is assigned
to a variable, the name of the variable can be used as a shorthand for the assigned
value. Variables can not only be used to store just single numbers, they can also store
more complex objects and whole data sets.

Since variable names in R cannot contain accented or greek characters, some cre-
ativity is required when translating a mathematical formula into R code: instead of
Xk we could, for example, write Xk and instead of α̃ we could, for example, write
alpha.tilde.

There is a subtle difference between the use of variables in mathematics and in
programming. While in mathematics expressions like x = x + 1 are not very useful,
the corresponding expression x <- x + 1 in R has a useful meaning:

> x <- 6
> x <- x + 1
> x
[1] 7

What happens here is that in the assignment x <- x + 1, the right-hand side x + 1

is evaluated first: by the rules for the use of variables, x is replaced by its value 6,
and then 6 + 1 is evaluated to 7. Once the value to be assigned is determined, this
value (the 7) is assigned to x. Consequently, the effect of the command x <- x + 1

is to increase the value stored in the variable x by 1.
One consequence of the fact that <- indicates an assignment, i.e. some action the

computer will perform, is that the order of commands can matter when assignments
are involved:

x <- 3
y <- x + 1

sets x to 3 and y to 4, whereas

y <- x + 1
x <- 3

also sets x to 3 but set y to whatever value x previously had, plus 1. If the value of
x has not been previously set, an error message to this effect will be shown when the
line y <- x + 1 is executed.

The main use of variables is to store data and results of computations for later
reference. This has several advantages: First, once a value is stored, the variable
name can be used to refer to this value, potentially saving much typing and making

2

the program shorter. If a descriptive name is chosen for the variable, this can also
make the intention of a command much clearer to human readers. Secondly, if the
result of a time-consuming download or computation is stored in a variable, the
result from the variable can be re-used without performing the computation again.
Sometimes, use of variables can make an analysis much faster.

3

4

Chapter 2

Loading Data into R

Before we can analyse data using R, we have to “import” the data into R. How exactly
this is done depends on how the data is stored, and more specifically on which file
format is used. Here we consider two commonly used formats: comma-separated
values (.csv) and Microsoft Excel files (.xls or .xlsx).

2.1 Importing CSV Files

The read.csv() command can be used to import .csv files into R: if we use the
command

x <- read.csv("file.csv")

then the contents of the file file.csv will be stored in the variable x. Optional
arguments to read.csv() can be used to specify whether or not the file includes
column names, and allow to deal with variations of how the data may be stored in
the file. These are explained in Appendix A (page 30).

The function can not only read data from the local computer, but can also down-
load data from the internet. If the file is on the local computer, you may need to
change R’s current directory to the directory where the file is stored before calling
read.csv(). In RStudio you can use the menu “Session . Set Working Directory .
Choose Directory. . . ” to do this.

Example 2.1. In the 2016 version of the MATH1712 module, I performed a small
questionnaire in the first lecture. The following R command can be used to load the
data from the questionnaire into R

x <- read.csv("http://www1.maths.leeds.ac.uk/~voss/rintro/Q2016.csv")

The variable x now contains the questionnaire results. Instead of directly downloading
the data from the internet into R, you can alternatively first download the data using
a web browser, and then import the data directly from your computer:

x <- read.csv("Q2016.csv")

Both approaches give the same result.

2.2 Importing Microsoft Excel Files

The easiest way to import Excel files into R is to first convert these files to .csv

format. To do this:

a) Open the file with the data in Excel.

b) Open a new, empty file (choosing “Blank workbook” in Excel).

c) Copy and paste the relevant cells into the empty file. It is important to just
copy the required data and to leave out any explanatory text and and empty

5

rows/columns. The data must form a tidy rectangle, with one individual per
row and one variate per column. Optionally, you can put column headers into
the first row.

d) Save the new file in .csv format in a folder where you will find it again.

e) Read the resulting .csv into R as explained above.

2.3 Checking the Imported Data

The following commands can be used to get a quick overview over the data:

• dim(x) gives the number of rows and columns of the data frame. Similarly,
nrow(x) shows the number of rows and ncol(x) shows the number of columns
in the data frame.

• str(x) shows the structure of any R object. This command is often an excel-
lent way to understand the nature of any problems one may encounter while
importing data into R.

• summary(x) prints, for each variate, the values of various summary statistics.
For variates with numeric values, these are the minimum, first quartile, median,
mean, third quartile, maximum, and the number of missing values. For attribute
data this gives the counts for each observed value.

• head(x) shows the first few rows of the data.

Every time you import a data set into R, you should use some of these commands
to check that everything went well. In case you discover problems, you should either
fix the data file (e.g. using Microsoft Excel) or by using the correct options for the
read.csv() command.

Example 2.2. Continuing with the data set from example 2.1, we can try the fol-
lowing commands: We first check that the data has plausible dimensions:

> dim(x)
[1] 220 5

This tells us that the data has n = 220 rows and p = 5 columns, as expected. Next,
we get some details about the five columns of the data frame:

> str(x)
’data.frame’: 220 obs. of 5 variables:
$ gender : Factor w/ 2 levels "F","M": 2 2 2 2 1 1 1 1 1 2 ...
$ height : num 180 183 183 182 164 ...
$ handedness : Factor w/ 3 levels "L","R","both": 2 2 2 2 2 2 2 2 2 2 ...
$ travel.time: int 20 25 20 12 5 20 15 10 11 7 ...
$ R.skills : Factor w/ 4 levels "basic","good",..: 1 1 1 1 1 1 1 3 1 1 ...

This shows, for each column, the name, the “data type” and the first few values. The
“data type” is a good indicator to detect problems; it should read int for integer
valued numeric data, num for all other numeric data, and Factor for attribute data.
For attribute data, the range of observed values is also shown, for example the column
gender takes the values f and m, as expected.

Finally, we can print summary statistics for all columns:

> summary(x)
gender height handedness travel.time R.skills
F:102 Min. :147.0 L : 18 Min. : 0.00 basic :157
M:118 1st Qu.:167.0 R :201 1st Qu.: 5.00 good : 4

Median :175.0 both: 1 Median : 15.00 medium: 28
Mean :173.7 Mean : 19.15 none : 31
3rd Qu.:180.3 3rd Qu.: 25.00
Max. :195.6 Max. :150.00
NA’s :23

6

2.4 Common Problems

There are many things which can go wrong when importing data. Some commonly
encountered problems are the following:

• If the data file contains no line with headers, but the headers=FALSE option
for read.csv() has been omitted, the first row of data will be used in place of
the column names. This can, for example, be seen in the str() output. The
solution to this problem is to correctly use the headers=FALSE option.

• If the data in a .csv file is not separated by commas but by some other character
like a semicolon, R will be unable to separate the columns. When this is the
case, the imported data will appear to only have one column, where each entry
shows as some garbled version of the data for the whole row. The solution to
this problem is to use the sep=... option.

• If attribute values are encoded inconsistently, e.g. if a mix of m and M is used to
encode the gender “male”, this will be visible in the str() output. One solution
to this problem is to fix the .csv file using Microsoft Excel, before trying to
import it into R again.

• If a numeric column in the input file contains one or more entries which are
neither numbers nor empty, R will interpret the whole column as attribute
data. This problem can be detected in the str() output, when a numeric
column is listed as having data type Factor. One solution to this problem is to
use Microsoft Excel to remove or fix the offending entry from the file.

7

8

Chapter 3

Data Types in R

Every object in R represents one of a handful of possible ‘data types’. In the examples
above we have already seen numbers and strings (short for ‘character strings’).

3.1 Numerical Data

3.1.1 Numbers

The basic data type in R are numbers. Most of the time, numbers in R programs are
written in the same way which is used in mathematics:

> 2+3
[1] 5
> 97*128
[1] 12416

R uses a special notation for very small or very large numbers:

> exp(100)
[1] 2.688117e+43

The expression xey, where x and y are ordinary numbers, stands for x·10y. Thus, 1e6
is a shorthand notation for one million and 1.3e-5 stands for 0.000013. The output
of the command shown above tells us that e100 is approximately equal to 2.69 · 1043.

3.1.2 Vectors

Vector objects in R are useful to represent mathematical vectors in a program; they
can also be used as a way to store data for later processing. An easy way to create vec-
tor objects is the function c (short for ‘concatenate’) which collects all its arguments
into a vector. The vector

x =

1
2
3


can be represented in R as follows:

> c(1, 2, 3)
[1] 1 2 3

The elements of a vector can be accessed by using square brackets: if x is a vector,
x[1] is the first element, x[2] the second element and so on:

> v <- c(7, 6, 5, 4)
> v
[1] 7 6 5 4
> v[1]
[1] 7
> v[1] + v[2]
[1] 13
> v[1] <- 99

9

> v
[1] 99 6 5 4

Vectors consisting of consecutive, increasing numbers can be created using the
colon operator:

> 1:15
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> 10:20
[1] 10 11 12 13 14 15 16 17 18 19 20

More complicated vectors can be generated using the function seq:

> seq(from=1, to=15, by=2)
[1] 1 3 5 7 9 11 13 15
> seq(from=15, to=1, by=-2)
[1] 15 13 11 9 7 5 3 1

Vectors in R programs are mostly used to store data sets, but they can also be used
to store the components of mathematical vectors, i.e. of elements of the space Rd.
Mathematical operations on vectors work as expected:

> c(1, 2, 3) * 2
[1] 2 4 6
> c(1, 2, 3) + c(3, 2, 1)
[1] 4 4 4

The function length() returns the length of a vector, i.e. how many numbers it
contains:

> v <- c(0,0,1,0)
> length(v)
[1] 4

3.1.3 Matrices

Individual elements of a matrix can be accessed using square brackets, just like for
vectors: if A is a matrix, A[1,1] denotes the top-left element of the matrix, A[1,]
denotes the first row of the matrix (as a vector), and A[,1] denotes the first column
of A:

> A <- matrix(c(1,2,3,4), nrow=2, ncol=2, byrow=TRUE)
> A[1,1] <- 9
> A

[,1] [,2]
[1,] 9 2
[2,] 3 4
> A[1,]
[1] 9 2
> A[,1]
[1] 9 3

The sum of matrices and the product of a matrix with a number can be computed
using + and *, the matrix-matrix and matrix-vector products from linear algebra
are given by %*%. (Careful, A * A is not the matrix product, but the element-wise
product!)

> A <- matrix(c(1, 2,
+ 2, 3),
+ nrow=2, ncol=2, byrow=TRUE)
> A

[,1] [,2]
[1,] 1 2
[2,] 2 3
> A %*% A

[,1] [,2]
[1,] 5 8
[2,] 8 13
> v <- c(0, 1)

10

> A %*% v
[,1]

[1,] 2
[2,] 3
> v %*% A %*% v

[,1]
[1,] 3

The last command shows that vectors are automatically interpreted as row vectors
or column vectors as needed: in R it is not required to transpose the vector x when
evaluating expressions like x>Ax.

3.2 Categorical Data

3.3 Text Data

Strings, short for ‘character strings’, are used in R to represent textual data, repre-
sented as a sequence of characters. Strings are used, for example, to specify the name
of a file to load in read.csv(), or the axis labels in a plot. Strings in R are enclosed
in quotation marks.

Sometimes a bit of care is needed when using strings: the string "12" represents
the text consisting of the digits one and two; this is different from the number 12:

> 12 + 1
[1] 13
> "12" + "1"
Error in "12" + "1" : non-numeric argument to binary operator

R complains that it cannot add "12" and "1", because these values are not numbers.
Strings can be stored in variables just like numbers and the function paste() can

be used to concatenate strings:

> s <- paste("this", "is", "a", "test")
> paste(s, ": ", "a", "bra", "ca", "da", "bra", sep="")
[1] "this is a test: abracadabra"
> paste("x =", 12)
[1] "x = 12"

The argument sep for the function paste specifies a ‘separator’ which is put between
the individual strings. The default value is a single space character. If the arguments
of paste are not strings, they are converted to a string before the concatenation:

> paste("x=", 12, sep="")
[1] "x=12"

3.4 Data Frames

A data frame is a two-dimensional data structure which can hold a complete data
set. The rows of the data frame correspond to individual observations, the columns
correspond to the variables observed. All values within one column must be of the
same type, e.g. numerical or categorical, but different columns can have different
types. (In contrast, for a matrix all elements must have the same type.)

Data loaded via read.csv() comes in the form of a data frame. The command
str() can be used to understand the different columns of a data frame. For example
the questionnaire data set considered earlier has the following columns:

> str(x)
’data.frame’: 220 obs. of 5 variables:
$ gender : Factor w/ 2 levels "F","M": 2 2 2 2 1 1 1 1 1 2 ...
$ height : num 180 183 183 182 164 ...
$ handedness : Factor w/ 3 levels "L","R","both": 2 2 2 2 2 2 2 2 2 2 ...
$ travel.time: int 20 25 20 12 5 20 15 10 11 7 ...
$ R.skills : Factor w/ 4 levels "basic","good",..: 1 1 1 1 1 1 1 3 1 1 ...

11

The output shows in the first line that x is indeed a data frame containing 220 observa-
tions of 5 variables. The following rows show that the variables gender, handedness
and R.skills are categorical, while height and travel.time are numerical.

3.5 Selecting Columns/Variables

To access all the data for one or more variables, i.e. columns of a data frame, the
following commands can be used:

• colnames(x) shows the names of the columns.

• The columns of a data frame or matrix x can be accessed using either x$name
or x[,"name"], where name stands for the name of the column. For the data
from example 2.1, the height column can be accessed as either x$height or
x[,"height"].

• When working with a data set without column names, you can access the
columns by number, e.g. x[,2] is the second column of x.

The columns of a data frame or matrix are vectors.

3.6 Selecting Rows/Individuals

Commands to access selected rows of the data frame:

• x[i,] gets row i of the data frame, e.g. x[1,] gets the first row.

• If r is a vector of integers, x[r,] gets the corresponding rows. For example,
x[c(2,5,10),] gives rows 2, 5 and 10 of the data frame and x[1:10,] gets the
first ten rows.

• In the R expressions above, you can write a minus sign in front of the row
specification to get all the data except for the specified rows. For example,
x[-1,] gets all rows but the first and x[-c(2,5,10),] gets the data with rows
2, 5 and 10 omitted.

• You can combine row and column selection, e.g. x[1:10,"height"] gives the
first ten height values.

You can find the row numbers of “interesting” samples using the which() com-
mand. The command returns the indices of all elements of a vector which satisfy some
condition. For example, we can use this to find all rows corresponding to left-handed
students:

> rows <- which(x$handedness == "L")
> rows
[1] 15 20 23 38 60 61 62 98 102 105 111 113 114 131 147 166
[17] 190 199

We can use this list to select the corresponding rows of the data set:

> x[rows,]
gender height handedness travel.time R.skills

15 M 185.42 L 20 basic
20 M 176.00 L 20 basic
23 F 165.10 L 30 basic
38 M 185.42 L 5 basic
60 M 190.50 L 2 basic
61 M 147.00 L 20 basic
62 M 185.42 L 10 basic
98 F 165.10 L 10 basic
102 M 185.42 L 5 basic
105 F NA L 25 basic
111 F 167.64 L 20 basic

12

113 M 187.96 L 22 medium
114 F 170.00 L 20 basic
131 F 167.64 L 25 basic
147 M 176.00 L 10 basic
166 F 177.80 L 0 medium
190 F 170.18 L 35 basic
199 M 180.00 L 20 basic

To select samples inside a which() statement, you can use <, ==, and > for compar-
isons (note that testing for equality requires a double equality sign). Conditions can
be combined using & (when both conditions must be true) or | (when either condition
can be true). For example, the following command lists all left-handed students with
‘medium’ R skills:

> x[which(x$handedness=="L" & x$R.skills=="medium"),]
gender height handedness travel.time R.skills

113 M 187.96 L 22 medium
166 F 177.80 L 0 medium

Using | we can find all students which are either very small or very tall:

> x[which(x$height<150 | x$height>190),]
gender height handedness travel.time R.skills

10 M 190.50 R 7 basic
60 M 190.50 L 2 basic
61 M 147.00 L 20 basic
67 M 190.50 R 5 basic
72 M 195.58 R 20 basic
77 F 149.86 R 20 basic
79 M 147.32 R 10 basic
116 M 190.50 R 20 basic
191 M 195.00 R 5 basic
209 M 190.50 R 70 basic

13

14

Chapter 4

Working with Data

4.1 Mathematical Operations

Some of the simplest commands available are the ones which correspond directly to
mathematical operations. In the first example of this section, we could just type
3 + 4 to compute the corresponding sum. The following table lists the R equivalent
of the most important mathematical operations.

operation example R code

addition 8 + 3 8 + 3

subtraction 8− 3 8 - 3

multiplication 8 · 3 8 * 3

division 8/3 8 / 3

power 83 8 ^ 3

modulus 8 mod 3 8 %% 3

absolute value |x| abs(x)

square root
√
x sqrt(x)

exponential ex exp(x)

natural logarithm log(x) log(x)

sine sin(2πx) sin(2 * pi * x)

cosine cos(2πx) cos(2 * pi * x)

When these operations are applied to a vector, they operate on the individual elements
of the vector. This allows to efficiently operate on a whole data set with a single
instruction.

> x <- c(-1, 0, 1, 2, 3)
> abs(x)
[1] 1 0 1 2 3
> x^2
[1] 1 0 1 4 9

4.2 Summary Statistics for Numerical Data

The R commands for computing summary statistics operate on vectors. For example,
these commands can be applied to a column of a data frame, selected as explained
above. Assuming that v is a vector of numbers in R,

• sum(v) computes the sum of the elements of v,

• mean(v) computes the sample mean of the elements of v,

• var(v) computes the sample variance of the elements of v,

• sd(v) computes the sample standard deviation of the elements of v,

• median(v) computes the median of the elements of v,

15

• min(v) computes the minimum of the elements of v,

• max(v) computes the maximum of the elements of v,

• range(v) computes the range of the elements of v,

• quantile(v, alpha) computes the alpha-quantile of the elements of v, and

• IQR(v) computes the interquartile range of the elements of v.

One potential pitfall is the fact is that a function mode() exists in R, but this function
does not compute the mode of a sample.

Many of these function have optional arguments to modify their behaviour. For
example, the quantile function allows to choose which value should be returned in
case the quantile is not unique. These options are explained on the help pages for the
corresponding commands; for example help(quantile) shows, amongst other things,
the options available for the quantile command. One option, na.rm=TRUE is shared
by all of the commands above; it can be used to tell R to ignore missing values in a
vector and to compute the summary statistic only from the non-missing values.

Example 4.1. Continuing with the data set from the questionnaire, considered above,
we can try the following commands:

> h <- x$height
> min(h)
[1] NA
> min(h, na.rm=TRUE)
[1] 147
> max(h, na.rm=TRUE)
[1] 195.58
> range(h, na.rm=TRUE)
[1] 147.00 195.58
> quantile(h, 0.9, na.rm=TRUE)

90%
185.42

Since h has missing values (not all students gave their heights), we need to use the
na.rm=TRUE option to get useful results. From the R output we see that height values
range from 147 cm to 195.58 cm, and that 90% of the responses are ≤ 185.32 cm.

4.3 Contingency Tables

The R command for summarising attribute data in tabular form is table(). This
command can be used both for a single variate, or for a pair of variates.

Example 4.2. Contingency tables showing either just the counts for both genders,
or for all combinations of handedness and gender, can be produced as follows:

> table(x$gender)

F M
102 118
> table(x$handedness, x$gender)

F M
L 8 10
R 94 107
both 0 1

The table() command returns the counts as a vector or a matrix. This matrix
can be stored in a variable, and elements of this matrix can be used in further com-
putations:

16

> t <- table(x$handedness, x$gender)
> t

F M
L 8 10
R 94 107
both 0 1

> t[,1]
L R both
8 94 0

> sum(t[1,])
[1] 18

4.4 Counting

Finally, a count of how often certain cases of observations appear in the data can
obtained in different ways:

• table() can be used to get the counts for different groups, and the result can
then be read off the resulting table.

• which() can be used to get a list of all observations in the group (see section 3.6),
and then the length of the resulting vector gives the count.

• Alternatively, the same result can be obtained by taking the sum of the boolean
vector which contains TRUE for all rows where the observation should be counted;
this works because TRUE and FALSE are interpreted as 1 and 0, respectively, in
contexts where numbers are expected.

Example 4.3. We can get the number of students which gave a height between 160 cm
and 170 cm using either of the following two methods:

> length(which(x$height >= 160 & x$height <= 170))
[1] 52
> sum(x$height >= 160 & x$height <= 170, na.rm=TRUE)
[1] 52

4.5 Correlation and Covariance

The functions to compute sample covariances and correlations in R are cov() and cor().

> x <- c(1, 2, 3, 4)
> y <- c(1, 2, 3, 5)
> cov(x, y)
[1] 2.166667
> cor(x, y)
[1] 0.9827076

Both functions have an optional argument use=..., which controls how missing data
is handled.

• If use="everything" (or if use=... is not specified), the functions return NA,
if any of the input data are missing.

> z <- c(1, 2, NA, 4)
> cor(x, z)
[1] NA

• If use="all.obs", the functions abort with an error, if any of the input data
are missing.

> cor(x, z, use="all.obs")
Error in cor(x, z, use = "all.obs") : missing observations in cov/cor

17

• If use="complete.obs", any pairs (xi, yi) where either xi or yi is missing are
ignored, and the covariance/correlation is computed using the remaining sam-
ples.

> cor(x, z, use="complete.obs")
[1] 1
> cor(y, z, use="complete.obs")
[1] 0.9958706

18

Chapter 5

Creating Plots

In this section we show different ways to use graphs to explore a data set.

5.1 Scatter Plots

Scatter plots can be used to visualise the joint distribution of paired data (xi, yi)
for i ∈ {1, 2, . . . , n}. Scatter plots still provide a good means to get an idea of the
dependency structure between x and y.

If you have stored the data in two vectors x and y, you can use the command
plot(x, y) to produce a scatter plot; each sample is represented by a small circle.
R provides many optional arguments for the plot() command which can be used to
adjust the plot.

Example 5.1. We can use the following commands to produce a scatter plot of 20
random samples. The options for plot() adjust the x-range displayed, change the
label on the vertical axis, and use diamonds to indicate the data points.

x <- rnorm(20)
y <- rexp(20)
plot(x, y, xlim=c(-3, 3), ylab="height", pch=5)

(see figure 5.1.)

5.2 Line Plots

Line plots can be used to show the functional relationship between two variables. Such
plots can, for example, be used to display time series data (where a value changes
as a function of time), or to display mathematical functions like the density of a
distribution.

Line plots can be produced by adding the type="l" (short for ‘line’) option to
the plot command: Instead of marking the points (xi, yi) with a small circle, a line
connecting the points is drawn.

Additional straight lines can be added to an existing plot using the abline()

command:

• abline(h=...) adds a horizontal line at the given y-coordinate.

• abline(v=...) adds a vertical line at the given x-coordinate.

• abline(a=..., b=...) adds a straight line with a given intercept a and a given
slope b.

• The lwd=... and lty=... options can be used as described above.

19

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

2.
0

2.
5

x

he
ig

ht

Figure 5.1. An illustration of the effect of different options for the plot() command
for scatter plots.

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n(

x)

Figure 5.2. An example of a line plot in R.

Example 5.2. The dashed horizonal line, and the three vertical lines were added
using the commands

x <- seq(0, 2*pi, length.out=100)
plot(x, sin(x), type="l")
abline(h=0, lty=2)
abline(v=0, lwd=0.5)
abline(v=pi, lwd=0.5)
abline(v=2*pi, lwd=0.5)

(see figure 5.2.)

5.3 Histograms

Histograms are used to illustrate the spread and distribution of a sample of numerical
data. The data are summarised by splitting the range into a number of “buckets”
and, for each bucket, showing how many (or which fraction) of the data fall into this
bucket. Histograms can only be used for single, numerical variables.

If x is a numerical vector, the command hist(x) can be used to plot a histogram

20

x

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 5.3. An example of a histogram plotted in R.

of x. As for the plot command, there are many optional arguments for hist() to
adjust the appearance of the histogram:

• The option main="..." can be used to change the title text above the histogram.
main=NULL can be used to remove the title. xlab=... and ylab=... can be used
to change the axis labels as explained above.

• breaks=... can be used to adjust the number and size of histogram buckets:
breaks=n where n is a number tells R to use approximately n histogram buckets,
breaks=a where a is a vector tells R to use the numbers in a as the bucket bound-
aries. For example, the command hist(x, breaks=seq(-0.5, 10.5, by=1))

uses buckets [−0.5, 0.5], (0.5, 1.5], . . . , (9.5, 10.5] for the histogram.

• freq=FALSE can be used to change the y-axis value from counts to relative
frequencies. If this option is used, the total area under the histogram equals 1
and the histogram forms a probability density.

• col="gray80" can be used to fill the histogram bars with light grey.

Example:

x <- rnorm(1000)
hist(x, breaks=50, col="grey80", freq=FALSE, main=NULL, xlab="x")
curve(dnorm, add=TRUE)

(see figure 5.3.) Since rnorm() produces standard normally distributed samples, and
since the freq=FALSE option was used, the histogram approximates the density of the
standard normal distribution. For comparison, the solid line gives the exact density.

5.4 Box Plots

21

22

Chapter 6

Linear Regression

6.1 Fitting a Model

The function lm() can be used to fit a linear model in R, using the least squares
method. The basic use of lm() is to call the function as

lm(y ~ x)

where x is the explanatory variable and y is the response. This command shows the
estimated regression coefficients.

Example 6.1. After we have stored the input and response vectors in the variables
x and y, we can execute the following command:

> lm(y ~ x)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

2.006 0.720

The output indicates that the intercept α was estimated as α̂ = 2.006 and the slope β
was estimated as β̂ = 0.720.

Often, it is a good idea to store the fitted model in a variable, e.g. using an
assignment like

m <- lm(y ~ x)

In this way, we can later refer to m when we work with the fitted model.
There are different ways to specify the form of the model and the data to be used

for fitting the model.

a) The most basic way to call lm() is the case where the explanatory variables and
the response variable are stored as separate vectors. Assuming, for example,
that the explanatory variables are x1, x2, x3 and that the response variable is y
in R, we can tell R to fit the linear model y = β0 + β1x1 + β2x2 + β3x3 + ε by
using the following command:

lm(y ~ x1 + x2 + x3)

Note that R automatically added the intercept term β0 to this model. If we want
to fit a model without an intercept, i.e. the model y = β1x1 + β2x2 + β3x3 + ε,
we have to add 0 + in front of the explanatory variables:

lm(y ~ 0 + x1 + x2 + x3)

The general form of a model specification is the response variable, followed by
the tilde character ~, followed by a +-separated list of explanatory variables.
This is the method we used in the example above.

23

For this form of calling lm(), the variables y, x1, x2, and x3 in the examples
above must be already defined before lm() is called. It may be a good idea to
double-check that the variables have the correct values before trying to call lm().

b) Both for the response and for explanatory variables we can specify arbitrary R
expressions to compute the numeric values to be used. For example, to fit the
model log(y) = β0 + β1x1 + β2x2 + ε (assuming that all yi are positive) we can
use the following command:

lm(log(y) ~ x1 + x2)

Some care is needed, because +, * and ^ have a special meaning inside the first
argument of lm(); any time we want to compute a variable for lm() using these
operations, we need to surround the corresponding expression with I(), to tell
R that +, * or ^ should have their usual, arithmetic meaning. For example, to
fit a model of the form y ∼ β0 + β1x + β2x

2 + ε, we can use the following R
command:

lm(y ~ x + I(x^2))

Here, the use of I() tells R that x^2 is to be interpreted as the vector (x21, . . . , x
2
n).

Similarly, we can fit a model of the form y = β0 + β1(x1 + x2) + ε:

lm(y ~ I(x1+x2))

Here, the use of I() tells R that x1+x2 indicates the vector (x1,1+x2,1, . . . , x1,n+
x2,n) instead of two separate explanatory variables.

Details about how to specify models in calls to lm() can be found by using the
command help(formula) in R.

c) If the response and the explanatory variables are stored in the columns of a
data frame, we can use the data=... argument to lm() to specify this data
frame and then just use the column names to specify the regression model.
For example, the stackloss data set built into R consists of a data frame
with columns Air.Flow, Water.Temp, Acid.Conc., stack.loss. To predict
stackloss$stack.loss from stackloss$Air.Flow we could write

lm(stack.loss ~ Air.Flow, data=stackloss)

As a special case, a single dot “.” can be used in place of the explanatory
variables in the model to indicate that all columns except for the given response
should be used. Thus, the following two commands are equivalent:

lm(stack.loss ~ ., data=stackloss)
lm(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., data=stackloss)

To check the numerical values lm() is using for each column, lm() can be replaced
with model.frame(), using the same formula and data= argument. The result is a
data frame where the first column holds the values used for the response variable,
and the following columns hold the values used for the explanatory variables.

6.2 Working with the fitted model

The output of the lm() function is an R object which can be used the extract infor-
mation about the fitted model. A good way to work with this object is to store is in a
variable and then use commands like the ones listed below to work with this variable.
For example, the following R command fits a model for the stackloss data set and
stores it in the variable m. Many operations are available to use with this object m:

a) The command summary() can be used to print additional information about
the fitted model. Much of this output is beyond the scope of this text.

> summary(m)

Call:
lm(formula = y ~ x)

24

Residuals:
Min 1Q Median 3Q Max

-0.008357 -0.007073 -0.004975 0.006933 0.018391

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.006483 0.002854 703.1 <2e-16 ***
x 0.719967 0.003304 217.9 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.009822 on 10 degrees of freedom
Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
F-statistic: 4.748e+04 on 1 and 10 DF, p-value: < 2.2e-16

b) The coefficients, as a vector containing the intercept and the slope, can be
obtained using coef(m).

> coef(m)
(Intercept) x
2.0064835 0.7199673

> alpha <- coef(m)[1]
> beta <- coef(m)[2]
> alpha + x[1] * beta
(Intercept)

1.908622

The last command compute the fitted value ŷ1 = α+βx1. (The title (Intercept)
above the result is spurious and should be ignored.)

c) The fitted values ŷi = α+ βxi can be obtained using the command fitted(m).

> fitted(m)
1 2 3 4 5 6

1.9086222 1.9771110 2.7340385 1.8925397 0.4537749 2.3654929
7 8 9 10 11 12

1.4627322 2.5670394 2.5497549 1.2148465 2.1269700 1.9854003

Note that the first of these values coincides with the result we computed above
using coef().

d) The estimated residuals ε̂i = yi − ŷi can be obtained using the command
resid(m). These are the distances of the data to the fitted regression line.
Positive values indicate that the data are above the line, negative values indi-
cate that the data are below the line.

> resid(m)
1 2 3 4 5

-0.007662386 -0.006876113 0.013866847 -0.007820780 0.018390555
6 7 8 9 10

0.001005794 -0.008356636 0.007389788 0.006780861 -0.005424833
11 12

-0.004524426 -0.006768671

6.3 Making predictions

One of the main aims of fitting a linear model is to use the model to make predictions
for new, not previously observed x-values, i.e. to compute ynew = α + βxnew. The
command for prediction is predict(m, newdata=...), where m is the model previ-
ously fitted using lm(), and newdata specifies the new x-values to predict responses
for. The argument newdata should be a data frame with a column, which has the
name of the original variable and contains the new values.

25

> predict(m, newdata=data.frame(x=1))
1

2.726451
> predict(m, newdata=data.frame(x=c(1,2,3,4,5)))

1 2 3 4 5
2.726451 3.446418 4.166385 4.886353 5.606320

26

Appendix A

Important R Commands

Summary

c() combines its arguments to form a vector.

colnames() returns the column names of a matrix or data frame.

cor() computes sample correlations.

cov() computes sample covariances.

dim() returns the number of rows and columns for two-dimensional data.

lm() fits linear models, using least squares regression.

plot() shows line and scatter plots.

read.csv() loads data stored in ‘comma separated values’ (CSV) format into R.

str() shows how given data is stored in R, explaining the type and structure of the
data.

table() creates tables, showing how often each class occurred in a sample of categor-
ical data.

The following sections describe these commands in more detail.

c()

The function c() combines its arguments to form a vector. The arguments can
be either numbers or vectors. The result is a single vector, composed of all given
numbers and the elements of the given vectors, in order. All arguments are converted
to a common type while the resulting vector is formed. Details, in particular about
the case where arguments with different types are given, can be found using help(c).

colnames()

The command colnames() returns the column names of a matrix or data frame.

27

cor()

If x and y are vectors of the same length, cor(x,y) returns the sample correlation
between vectors x and y. The optional argument use=... controls how missing data
is handled:

• If use="everything" (or if use=... is not specified), the functions return NA,
if any of the input data are missing.

• If use="all.obs", the functions abort with an error, if any of the input data
are missing.

• If use="complete.obs", any pairs (xi, yi) where either xi or yi is missing are
ignored, and the covariance/correlation is computed using the remaining sam-
ples.

The help(cor) command gives more information about the use of this function.

cov()

If x and y are vectors of the same length, cov(x,y) returns the sample covariance
between vectors x and y. An optional argument use=... controls how missing data is
handled (see the description of cor(), above) The help(cov) command shows gives
more information about the use of this function.

dim()

For a matrix or a data frame x, the command dim(x) returns a vector which gives
the number of rows and columns of x.

lm()

The lm() command can be used to fit a linear model to data, using least squares
regression. The only required argument is a “formula” to specify the form of the
model being fitted (see section 6.1).

The help(lm) command shows gives more information about the use of the lm()

function. Details about how to specify models can be found using help(formula).

plot()

The plot() command produces line and scatter plots from paired, numerical data.
If x contains a vector (x1, . . . , xn) and y contains a vector (y1, . . . , yn), then the
command

plot(x, y)

produces a scatter plot, showing the observations (xi, yi). There are many optional
arguments, which can be used to adjust the plot. The most important ones are:

• xlab="..." and ylab="..." can be used to adjust the axis labels for the x-
and y-axis, respectively.

• xlim=c(a,b) adjusts the plot so that the x-coordinate range from a to b is
shown in the plot. This option can, for example, be used to exclude outliers
from the plot.

• pch=... can be used to change the symbol used to represent samples in the
scatter plot. Many values are possible, e.g. pch=0 gives squares, pch=2 gives
triangles and pch=5 gives diamonds.

The command

plot(x, y, type="l")

28

produces a line plot, by connecting consecutive points using straight line segments.
In addition to the arguments listed above, the following options can be used:

• lwd=... can be used to adjust the line width, e.g. lwd=2 gives thicker lines,
lwd=0.5 gives thinner lines.

• lty=1 up to lty=6 can be used to get different forms of dashed or dotted lines.

Further details about the function plot() can be found using the command help(plot)

in R. Graphics parameters used to adjust the plot are explained at help(par).

29

read.csv()

The read.csv() command imports data from a CSV file into R: if we use the com-
mand

x <- read.csv("file.csv")

then the contents of the file file.csv will be stored in the data frame x, as a data
frame. The most important things to know about the function read.csv() are:

a) The filename can either denote a file on the local computer, or a file available
for download from the internet. If you are not sure what the filename for a
given input file is, you can use the command file.choose() in place of the file
name, to choose a file interactively. If you want R to read the file directly from
the internet, replace the file name with the web address (starting with http://

or https://).

b) By default, R uses the first row of the .csv file to set the column names of the
data frame and assumes that the actual data starts in row 2 of the .csv file. If
the file does not contain column names, you can use the header=FALSE option
with read.csv() to tell R that the column names are not included in the data:

x <- read.csv("file.csv", header=FALSE)

You can see whether this option is needed by opening the file in Excel and
looking whether the first row contains headers or not. Alternatively you can
inspect the column names and the contents of the first data row in R to see
whether everything looks right after importing the data.

c) Sometimes, the columns in a .csv file are separated not by a comma, but using
a semicolon instead. In this case you need to use the option sep=";" when you
import the data:

x <- read.csv("file.csv", sep=";")

d) Missing values should be represented by empty cells in the .csv file and are
represented as special NA values in the data frame. If the .csv file uses a
different encoding for missing values, the na.strings option can be used to
tell read.csv() which cell values should be interpreted as missing values. For
example, read.csv("file.csv", na.strings=c("", "-")) can be used for a
file where missing values are indicated by either empty cells or cells containing
a hyphen.

Further details about the function read.csv() can be found using the command
help(read.csv) in R.

str()

The command str(x) shows a compact description of the structure of the data stored
in x. If x is a data frame, a one-line summary for every column of x is shown.

table()

The command table(x) returns a vector, which shows how often each unique value
occurs in x.

The command table(x, y) returns a matrix, which shows how often each unique
pair of values (xi, yi) occurs. Here, x and y must be vectors of the same length, The
rows of the matrix correspond to values of x, the columns correspond to values of y.

30

	The Basics
	Commands
	Variables

	Loading Data into R
	Importing CSV Files
	Importing Microsoft Excel Files
	Checking the Imported Data
	Common Problems

	Data Types in R
	Numerical Data
	Numbers
	Vectors
	Matrices

	Categorical Data
	Text Data
	Data Frames
	Selecting Columns/Variables
	Selecting Rows/Individuals

	Working with Data
	Mathematical Operations
	Summary Statistics for Numerical Data
	Contingency Tables
	Counting
	Correlation and Covariance

	Creating Plots
	Scatter Plots
	Line Plots
	Histograms
	Box Plots

	Linear Regression
	Fitting a Model
	Working with the fitted model
	Making predictions

	Important R Commands

