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Abstract

This work investigates the modelling of data by a non-homogeneous Poisson process. The
mathematical theory behind the Poisson distribution is introduced, this leads to the homoge-
neous Poisson process. The non-homogeneous Poisson process is developed as a generalisation
of the homogeneous case. The theory behind the estimation of the non-homogeneous inten-
sity function is developed. Throughout, R is used as the statistical software to graphically
and numerically described the data and as the programming language to estimate the intensity
functions. Several classes of intensity functions are considered and the parameters are found by
maximum likelihood estimation. The resulting models are found to fit the data fairly well.
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Chapter 1

Introduction

This work is concerned with fitting a non-homogeneous Poisson process to data. The non-
homogeneous process is a generalisation of the homogeneous process, which itself uses the
Poisson distribution as part of it’s definition. The homogeneous Poisson process is fundamental.
It is very simple, in one sense defines randomness (to be explained later), it is easy to manipulate
mathematically and various extensions give rise to other stochastic processes which are more
realistic.

When modelling data with most mathematical and statistical models there are usually unknown
parameters in these models which need to be estimated. This estimation usually involves the
data. The Poisson distribution has a single parameter. For the simple homogeneous Poisson
process the unknown parameter is the rate of occurrence, this is a single real number. There
are several common accepted methods of estimating these parameters: method of moments
(Dudewicz and Mishra, 1988, p. 362-7), least squares and the method of maximum likelihood is
very popular due to favourable theoretical properties (Dudewicz and Mishra, 1988, p. 347-362).

Modelling the non-homogeneous Poisson process is more complex. Not only are there unknown
parameters which need estimating, we also need to decide on the functional form of the intensity
function. In this work four classes of functions were considered. These were:

1. Polynomials of the form λ(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n with the restriction that
λ(x) ≥ 0 ∀x.

2. Fourier(periodic) series λ(x) = a0 +
∑n

j=1 bj sin(2π
x
T fj) + cj cos(2π

x
T fj) with the

restriction that λ(x) ≥ 0 ∀x.

3. Exponentials of polynomials λ(x) = exp(a0 + a1x+ a2x
2 + · · ·+ anx

n)

4. Exponentials Fourier series λ(x) = exp
(
a0 +

∑n
j=1 bj sin(2π

x
T fj) + cj cos(2π

x
T fj)

)

Each function has unknown parameters. Maximum Likelihood Estimation (MLE) is used to
estimate the parameters.
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This work contains chapters on the Poisson distribution where the distribution is defined, the
theory about confidence intervals is introduced. R programs which calculate the confidence
intervals based on an observation from a Poisson distribution are included.

A chapter on point processes, which includes theory on general point process as well as results
on the Poisson process in particular.

A chapter on the homogeneous Poisson process showing how four definitions of it are equiva-
lent.

A chapter on the non-homogeneous Poisson process focusing on the theoretical MLE of the
intensity function and how it can be implemented in practice using the R language.

A final chapter on the results as we fit the various models to actual data.

1.1 Notation

This is the default notation that will be used throughout this work. Exceptions to this notation
will be clearly marked and explained in the text.

t, s will refer to time. By default s < t

log will represent the natural logarithm to base e

{N(t), t ≥ 0} is a counting process. Usually starting at time t = 0, so N(0) = 0

λ will in general refer to the parameter of both the Poisson processes and the various distribu-
tions such as the exponential, gamma and Poisson.

µ will be reseserved to represent the mean or expected value of some random process.

The Poisson distribution with parameterλ will be written as Pois(λ) where,

P (X = k) =
e−λλk

k!
, k = 0, 1... (1.1)

The Exponential distribution with parameter λ will be written as M(λ) where,

f(t) = λe−λt, t ≥ 0 (1.2)
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The Gamma distribution with parameters n and λ will be written as Γ(n, λ) where,

f(t) =
tn−1λne−λt

(n− 1)!
, t ≥ 0 (1.3)
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Chapter 2

The Poisson Distribution

2.1 Introduction

This chapter describes the Poisson distribution where it is defined, the theory about confidence
intervals is introduced. R programs which calculate the confidence intervals based on an obser-
vation from a Poisson distribution are included.

The Poisson distribution is attributed to the French mathematician Simeon Denis Poisson (1781-
1840) who introduced it in 1837.

The Poisson distribution is a discrete distribution defined on non-negative integers, it has a single
parameter say λ, and will be written as Pois(λ) where,

P (X = k) =
e−λλk

k!
, k = 0, 1... (2.1)

It can easily be shown (Dudewicz and Mishra, 1988, p. 221-222) that the expected value of X,
E(X) = λ and the variance var(X) = λ. Since E(X) = λ, λ the parameter is also a measure
of the intensity or magnitude of the value of the r.v. X.

2.2 Estimate for the Parameter (Intensity)

Suppose we have a single observation from the Poisson distribution, say m and we want to
estimate the value of the intensity λ based on the value of this observation. One method of
doing this is maximum likelihood. We find the value of λ which maximises the likelihood of
the observation occurring.

Although the Poisson distribution is discrete from the point of view of the random variable, it is
both continuous and differentiable with respect to the parameter λ when the random variable is
kept constant, so it is possible to use calculus to maximise the likelihood.
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Suppose we observe no event, then (m = 0) the likelihood of this happening is using 2.1
P (X = 0) = e−λ.

This equation has no turning point and is maximised on the boundary when λ = 0.

When (m > 0) equation 2.1 is differentiable as a function of λ and standard calculus can be
used to find the maximum likelihood estimate of λ, this turns out to be m itself (Beaumont,
1980, p. 89-90). This estimate of λ turns out to be an unbiased estimate of λ.

2.3 Confidence Interval for the Intensity

Instead of just having a single estimate of λ it is more useful to have an interval estimate for λ.
This interval will be defined by a lower bound(limit) and an upper bound(limit).

One way of finding these lower and upper bounds is to consider a duality with hypotheses tests
(Dudewicz and Mishra, 1988, p. 549-552) contains a very good abstract description based on a
generic hypotheses test and it’s equivalence to interval estimation. Based on the observed data
“m” we accept the null hypothesis that H0 : λ = λ0 when m falls within certain bounds with
probability (1 − α), we call this the confidence coefficient. And we reject the null hypotheses
when m falls outside these limits with probability α.

Suppose, we have a simple null hypotheses H0 : λ = λ0 and a composite alternative H1 : λ ̸=
λ0 we reject H0 if m falls in a critical region Cλ , let Dλ be it’s complement.

If Pλ(m ∈ Cλ) = α then Pλ(m ∈ Dλ) = 1− α.

The significance level of the hypotheses test is α, (1− α) is the confidence coefficient.

Let S(m) = {λ∗ : m ∈ Dλ∗}.

In other words S(m) is the collection of all λ∗’s for which the observation m does not belong
in the rejection region of H0.

So, S(m) is a set of λ∗’s which can reasonably give rise to the observation m. Thus given m, or
if m is observed then S(m) is the set of λ’s which can reasonably give rise to m.

We thus call S(m) a confidence set for λ with confidence coefficient (1− α).

An informal way of explaining how to obtain these lower and upper bounds is: (Daly et al.,
1995, p. 269-271) consider an upper bound for λ, if the true value λu is very high and above
its upper bound (where the upper bound is determined from the data m) then there should be a
very low probability of obtaining the actual observed value of m. So if the true value of λ is λu

and the probability of obtaining a value as low as m or lower is < α/2. The actual upper limit
for λ is the value where the probability of getting a value as low as m or lower is equal to α/2.
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This motivates the definition of function f below.

Consider a lower bound for λ, if the true value λl is very low and below its lower bound (where
the lower bound is determined from the data m) then there should be a very low probability of
obtaining the actual observed value of m. So if the true value of λ is λl and the probability of
obtaining a value as high as m or higher is < α/2. The actual lower limit for λ is the value
where the probability of getting a value as high as m or higher is equal to α/2. This motivates
the definition of function g below.

An alternative and equivalent explanation is: Based on the observed data m, suppose we have
lower and upper bounds L(m), U(m) and these define an (1 − α)% symmetrical confidence
interval for the unknown parameter λ. When λ is at the boundary points the probability of
getting the original data m or more extreme is actually equal to α/2. So if λ = L(m) then
P (X ≥ m) = α/2. If λ < L(m) then P (X ≥ m) < α/2. So if λ = U(m) then P (X ≤
m) = α/2. If λ > U(m) then P (X ≤ m) < α/2.

2.3.1 Lower and upper confidence bounds for the intensity

Definition 1. Let 0 < α ≤ 1 and X ∼ Pois(λ). Define functions f and g by

f(λ) = Pλ(X ≤ m) =

m∑
k=0

e−λλ
k

k!

and

g(λ) = Pλ(X ≥ m) =
∞∑

k=m

e−λλ
k

k!

for all λ > 0. For a symmetrical confidence interval we define U or U(m) by f(U(m)) = α
2

and L or L(m) by g(L(m)) = α
2 .

The definition of U is equivalent to:

PU(m)(X ≤ m) =

m∑
k=0

e−U(m) (U(m))k

k!
=

α

2
.

The definition of L is equivalent to:

PL(m)(X ≥ m) =

∞∑
k=m

e−L(m) (L(m))k

k!
=

α

2
.

Suppose we want a (1− α)% confidence interval(symmetrical if possible) for a parameter λ of
a Poisson distribution.

Proposition 1. If X ∼ pois(λ) then, as λ increases, Pλ(X ≤ a) decreases and limλ→∞ Pλ(X ≤
a) = 0 for all a.
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Proof. We have

Pλ(X ≤ a) =
a∑

k=o

e−λλ
k

k!
= e−λ + λe−λ +

λ2

2!
e−λ + ....+

λa

a!
e−λ.

When λ = 0, Pλ(X ≤ a) = 1 for all a ∈ {0, 1, 2....}. Pλ(X ≤ a) is differentiable in λ so
differentiating it:

dPλ(X ≤ a)

dλ
= −e−λ

+ (e−λ − λe−λ)

+ (λe−λ − λ2

2!
e−λ)

+ (
λ2

2!
e−λ − λ3

3!
e−λ)

...

+ (
λ(a−2)

(a− 2)!
e−λ − λ(a−1)

(a− 1)!
e−λ)

+ (
λ(a−1)

(a− 1)!
e−λ − λa

a!
e−λ).

(2.2)

These terms cancel out pairwise term by term until only the final term is left.

dPλ(X ≤ a)

dλ
= −λa

a!
e−λ < 0

So Pλ(X ≤ a) is monotonically decreasing as λ increases.
Also, we have since exponentials dominate finite powers as λ → ∞.

lim
λ→∞

Pλ(X ≤ a) = lim
λ→∞

∑a
k=0

λk

k!

eλ
= 0.

Proposition 2. U(m) is increasing as m increases.

Proof. Let m1 > m2. U(m1) is defined by:

m1∑
k=0

e−U(m1)
(U(m1))

k

k!
=

α

2

⇒
m2∑
k=0

e−U(m1) (U(m1))
k

k!
+

m1∑
k=m2+1

e−U(m1) (U(m1))
k

k!
=

α

2

(2.3)

The second summation in the above equation is positive. So the first summation is:

m2∑
k=0

e−U(m1) (U(m1))
k

k!
<

α

2
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¿From definition 1 we know that:
m2∑
k=0

e−U(m2) (U(m2))
k

k!
=

α

2

Both the above equations represent cumulative Poisson probabilities up to m2. From proposition
1, we know that these cumulative probabilities decrease as the parameter increases. Since the
first summation is < α/2. The parameter U(m1) must be > U(m2). Thus U(m) increases as
m increases.

It can be shown that as m → ∞, U(m) → ∞.

2.3.2 Numerical methods for confidence intervals

Suppose we now observe n objects.
When n = 0 we have a special case. P (N = (n = 0)) = e−λ

The MLE of λ is zero. And the lower confidence limit, L(0) = 0 since λ cannot be negative,
the lower limit is equal to the estimate, to keep the confidence coefficient at α% we define a one
sided confidence interval. To find U(0) we use α rather than α

2 .
For U(0), we want to find U such that P (N ≤ 0) = P (N = 0) = e−U = α.
If α = 0.05 we get U(0) = 2.996 as the solution.
A 95% CI is thus [0, 2.996]
An (1− α)% CI is thus [0,−log(α)]

When n = 1, we need to find L(1) such that P (N ≥ 1) = 1− P (N = 0) = 1− e−L = α
2 .

Solution is L = −log(1− α/2)
α/2 = 0.025 gives L = 0.0253

For the upper limit we want U such that P (N ≤ 1) = e−U + Ue−U = α/2
Solving this analytically is difficult, using numerical methods gives the answer U = 5.572 when
α/2 = 0.025
A 95% CI is thus [0.025, 5.572]

For values of n ≥ 2 we need to use numerical methods. R is the statistical software package
used. the two R routines being used are ppois and uniroot.

For the lower limit, given an observed value of n, we want to find a value L such that P (N ≥
n) = P (N > (n − 1)) = α/2. This is equivalent to finding a root of the equation P (N >
(n− 1))− α/2 = 0. Due to the way ’R’ defines the function ppois.
To use uniroot, we define a function fl,

fl <- function(U,m,a) ppois((m-1),U, lower.tail=FALSE) - a/2

9



uniroot finds a numerical root of an equation however it expects to be given two estimates of
the root, one an under-estimate and an over-estimate. For the lower confidence limit, the under-
estimate is zero and the over-estimate is the actual MLE of the parameter.

For the upper limit , given an observed value of n, we want to find a value U such that P (N ≤
n) = α/2. In R this condition is ppois(n,U) = α/2.

Thus we want to find the zero of the equation ppois(n,U) - α/2=0.
To use uniroot, we define a function fu,

fu <- function(U,m,a) ppois(m,U) - a/2

To call uniroot in a specific case, for example we observe a value of n and the confidence coef-
ficient is 95% we need to specify lower and upper estimates for U. The lower limit is the MLE
estimate, which is n itself. The upper limit can be found by using Chebyshev’s inequality (Ross,
2000, p. 74). Chebyshev’s inequality is a genral inequality. Being a very general inequality It
should give a larger value than the one we are seeking and will be used as the upper bound in
the estimate of U in the root finding routine uniroot. The mathematical derivation of this upper
bound using Chebyshev’s is below.

Chebyshev’s inequality states that for any random variable X with mean µ and variance σ2, then
for any k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2
.

If X ∼ pois(λ), then µ = E(X) = λ and σ2 = var(X) = λ. Substituting these into
Chebyshev’s inequality we get.

P{|X − λ| ≥ k} ≤ λ

k2
.

The condition |X − λ| ≥ k is equivalent to: X ∈ (−∞, (λ− k)] ∪ [(λ+ k),∞).
These are two disjoint events. Thus:

P (|X − λ| ≥ k) = P (X ≤ (λ− k)) + P (X ≥ (λ+ k))

P (|X − λ| ≥ k)− P (X ≤ (λ− k)) = P (X ≥ (λ+ k)) > 0

P (|X − λ| ≥ k)− P (X ≤ (λ− k)) > 0

P (|X − λ| ≥ k) > P (X ≤ (λ− k))

P (X ≤ (λ− k)) < P (|X − λ| ≥ k) ≤ λ

k2

P (X ≤ (λ− k)) <
λ

k2

(2.4)
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We are free to choose k, so let k = (λ−m) ⇐⇒ (λ− k) = m, ∀λ with λ > m.

⇒ P (X ≤ m) <
λ

(λ−m)2

If we solve λ
(λ−m)2

= α
2 The resulting λ can be used as the upper over-estimate for U(m) that

is supplied to uniroot. This is quadratic in λ the solution is λ = m+ 1+
√
2mα+1
α .

The following ’R’ code routines calculate the upper and lower limits for λ, given an observation
m. The original functions fl ans fu were modified to work with the routines GetConfidenceIn-
terval.

GetConfidenceInterval <- function(x, alpha=0.05) {
if (x == 0) {

L <- 0
U <- - log(alpha)

} else {
fl <- function(lambda) {

ppois(x, lambda) - alpha/2
}
lambda.upper <- x + (1 + sqrt(2*x*alpha + 1)) / alpha
U <- uniroot(fl, c(x, lambda.upper))$root
fu <- function(lambda) {

ppois(x - 1, lambda, lower.tail=FALSE) - alpha/2
}
L <- uniroot(fu, c(0, x))$root

}
return(c(L,U))

}

To display the confidence intervals for various observations for example 0 to 100, I used the
following ’R’ code.

m=100
temp <-c()
LU = matrix(nrow=(m+1), ncol=2, byrow=TRUE)
for (k in 0:m){

temp=GetConfidenceInterval(k)
LU[(k+1),1]=temp[1]
LU[(k+1),2]=temp[2]

}
x<-seq(0,m)
plot(x,x,type="l",xlab="Observed value",
ylab="Upper and Lower confidence bounds")

11
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Figure 2.1: Confidence intervals for the mean of a Poisson distribution, from a single sample.
The horizontal axis gives the value of the sample, the vertical axis gives the corresponding
confidence interval.

for (k in 1:(m+1)){
segments(x0=x[k],y0=LU[k,1],x1=x[k],y1=LU[k,2])

}

A sample plot is shown in figure 2.1. This graph very clear, the lower and upper confidence
bounds are on either side of the estimate and the range increases (confidence interval length)
increases with the observed value.

However an exploratory analysis was done on a sample of real data and is shown graphically,
in figures 2.2, 2.3, 2.4, 2.5 This shows how the confidence intervals appear as we decrease
the confidence coefficient. This indicates that the graphs appearance changes as we alter the
confidence coefficient. Thus to discover the essential features of the data clearly there is a need
to experiment with different values of the confidence coefficient, this facility is provided in the
R routines that were written here.
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Figure 2.2: Confidence intervals with a confidence coefficient of 99% are wide and all except
one overlap from one time period to the next.
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Figure 2.3: Confidence intervals with a confidence coefficient of 95% are narrower but still
fairly wide.
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Figure 2.4: Confidence intervals with a confidence coefficient of 50% are much narrower and
the appearance of the graph is very different from the previous one.
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Figure 2.5: Confidence intervals with a confidence coefficient of 10% are very narrow and the
intensity function looks almost constant from interval to interval, except for one high outlier.
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2.3.3 Varying Rate example

Suppose that the rate of occurrence is not constant but varies through time. In this example
we assume that the rate varies according to a full cycle of a Sine function. The first step is to
generate/simulate data. The R function GeneratePoissonSample uses rejection sampling
to simulate data from a Poisson distribution where the rate changes. We assume a rate of 100
per unit time, the variable N is the number of occurrences in a time interval length (b-a). The
variable X generates the times of the occurrences. It is well known that if we know that a fixed
number of events have occurred in a given time, then the actual times of these events are uni-
formly distributed over that time interval (Ross, 2000, p. 270-272 ). The variable X contains
the times. Y is a vector which enables us to use rejection sampling (Morgan, 1984, p. 98-107)
(Ross, 2000, p 591-595) to either accept or reject the times in X according to the rate varying as
a Sine function.

GeneratePoissonSample <- function(a, b) {
N <- rpois(1, 100*(b-a))
X <- runif(N, a, b)
Y <- runif(N, 0, 2)
return(sort(X[which(Y <= sin(2*pi*(X-a)/(b-a)) + 1)]))

}

The R function IntervalCount splits the interval (b-a) into n intervals and counts how
many events fall into each interval. Lud1 is passed in as the vector containing the times of
events. The function outputs Lud2 as the counts.

IntervalCount <- function(Lud1,n,a,b) {
Lud2 <- c()
if (n==1) {Lud2[1] = length(Lud1)}
else {for (i in 1:n) {

lower = a +(i-1)*(b-a)/n
upper = lower + (b-a)/n
Lud2[i]=0
for (j in 1:length(Lud1)){

if((Lud1[j]>=lower)&&(Lud1[j]<upper)){
Lud2[i]=Lud2[i]+1}
}

}
}
return(Lud2)

}

The function ConfidenceIntervals2 takes the output from the function IntervalCount
"Lud2" and returns the confidence intervals in Lud3.
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ConfidenceIntervals2 <- function(lud2){
#Input a vector of counts
#Output the lower and upper confidence limits for these counts

U <- c()
L <- c()

for (i in 1:length(lud2)){
a=lud2[i]
UL =GetConfidenceInterval(a)
U[i] = UL[2]
L[i] = UL[1] }

return(c(L,U))
}

The above functions can be used to calculate and draw graphs showing the actual rate of oc-
currence, the estimated values and the corresponding confidence intervals. Below we have a
sample R code and graph. This verifies that the software works as intended, the estimates of
the Poisson rate and the confidence interval follow the rate that was used to generate them quite
closely.

a <- 0
b <- 24
lud1 = GeneratePoissonSample(a, b)
t = seq(a, b, length.out=100)
lambda = 50 * (sin(2*pi*(t-a)/(b-a)) + 1)

#pdf("m5871100.pdf", width=4.5, height=4.5)
par(mai=c(0.8,0.8,0.1,0.1))

# n= Number of intervals
DoOnePlot = function(n) {

lud2 = IntervalCount(lud1, n, a, b)
lud3 = ConfidenceIntervals2(lud2)

#scale
est = lud2 * n/(b-a)
LU = lud3 * n/(b-a)

plot(t, lambda, xlim=c(a,b), ylim=c(0,max(LU)), type="l",
xlab="interval", ylab="estimate and confidence limits")

for (i in 1:n) {
x0 = a + (b-a) * (i-1) / n
x1 = a + (b-a) * i / n
rect(x0, LU[i], x1, LU[i+n], col="gray", border=NA)
segments(x0=x0, y0=est[i], x1=x1,y1=est[i])
segments(x0=x0, y0=LU[i], x1=x1, y1=LU[i])
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Figure 2.6: Confidence intervals as the poisson mean varies as a Sine wave.

segments(x0=x0, y0=LU[i+n], x1=x1, y1=LU[i+n])
}
lines(t, lambda)

}

par(mfrow=c(3,1))
DoOnePlot(10)
DoOnePlot(60)
DoOnePlot(500)

#dev.off()

This example of the intensity λ varying as a sine wave is an example of a non-homogeneous
Poisson process which will be considered on more detail in later chapters.
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Chapter 3

Point Processes

This is a chapter on general point process and results specific to the Poisson process. We start
with a discussion on duality between the waiting time until a fixed number of events occur and
the number of events that happen in a fixed length of time. Then the memoryless property of the
exponential distribution is proved, this is useful to tie up loose ends when considering the start
of the Poisson process.

3.1 Duality

Suppose we have a process in time and we are interested in how many events have occurred after
a fixed length of time. And the distribution of how long it takes for a fixed number of events to
occur. As stated previously, let N(t) be the distribution of the number of events that occur in an
interval (0, t]. And Wn be the distribution of the waiting time until the nth event.
There is a relationship between N(t) and Wn

P (Wn > t) = P (N(t) < n) and equivalently P (Wn ≤ t) = P (N(t) ≥ n) (3.1)

This can be explained as follows, if Wn > t then we are still waiting for the nth event to occur
when time is t. The nth event occurs after time t. So the number of events that have occurred
up to time t must be less than n. And vice versa.

3.2 Memoryless property

The exponential distribution is the only continous distribution possesing the memoryless prop-
erty. This is the property that the distribution of waiting time to an event from some arbitary
point, is independent of how long it has being since the previous event happened. This is best
explained by an example.
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Suppose inter-arrival times follow an exponential distribution with rate λ. Let T be a random
variable of actual inter-arrival times. Let as start observing the system at time T = c. Let X
be the random variable measuring time to the first arrival, from the time we start observing the
system.

Suppose T ∼ M(λ) We want the distribution of X.

P (X > x) = P (T > x+ c|T > c)

=
P ([T > x+ c] ∩ [T > c])

P (T > c)

=
P (T > x+ c)

P (T > c)

=
e−λ(x+c)

e−λc

= e−λx.

(3.2)

Thus X ∼ M(λ). This means that the fact observing started at time T = c has been forgotten
and is not relevant.

3.3 Moment generating functions

Definition 2. The moment generating function (mgf), ϕX(s) of a random variable X is defined
as ϕX(s) = E(esX).

Example 1. The mgf of a Poisson distribution X ∼ pois(λ) is:

ϕ(s) = E(esX)

=

∞∑
k=0

eskP (X = k)

=

∞∑
k=0

eske−λλk

k!

= e−λ
∞∑
k=0

(λes)k

k!

= exp
(
λ(es − 1)

)
.

(3.3)

Mgf’s are important because each distribution has a unique mgf. Thus from the mgf we can
identify the distribution (Francis, 1979, p. 314). And the mgf of a sum of independent random
variables is the product of the mgf’s of the constituent random variables.

Proof. Let X1, X2, X3....Xn be independent random variables with Mgfs ϕ1(s), ϕ2(s), ϕ3(s)......ϕn(s).
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Let Y = X1 +X2 +X3 + ....+Xn.

ϕY (s) = E(exp(sY ))

= E(exp(sX1 + sX2 + sX3 + ...+ sXn))

= E(esX1esX2esX3 ....esXn) by independence.

= E(esX1)E(esX2)E(esX3)....E(esXn)

= ϕ1(s)ϕ2(s)ϕ3(s)...ϕn(s).

(3.4)

If in addition X1, X2....Xn are identically distributed then ϕY (s) = (ϕ1(s))
n.

lemma 1. Distribution of waiting time to nth event. Suppose the inter-arrival time between
successive events are independent and follow an exponential distribution. The waiting time to
the nth event follows a Gamma distribution.

Three methods showing this result are below. Each method starts with different assumptions.

Proof. Using mgfs.

The mgf of M(λ) is λ
(λ−s) .

The mgf of Γ(n, λ) is ( λ
λ−s)

n.

This shows that since the mgf of the Gamma is the mgf of the exponential raised to the power
n. The Gamma distribution is the sum of n i.i.d exponential variates using equation 3.4.

Proof. From Duality.

Using equation (3.1) and the assumption that the number of events in a fixed time follows a
Poisson distribution.

P (Wn ≤ t) = P (N(t) ≥ n)

=
∞∑
i=n

e−λt (λt)
i

i!
Differentiating with respect to t gives the density function of Wn.

f(t) = −
∞∑
i=n

λe−λt (λt)
i

i!
+

∞∑
i=n

λe−λt (λt)
i−1

(i− 1)!

= λe−λt (λt)
n−1

(n− 1)!
.

=
tn−1λne−λt

(n− 1)!
(3.5)

This is the density of the Gamma distribution.

23



Proof. Using independence in disjoint time periods.

This uses again the assumption that in a fixed time, number of events follow a Poisson distribu-
tion. We also assume that events happen independently in disjoint time periods.

P (t < Wn < t+ dt) = P (N(t) = n− 1, 1 event occurs in (t, t+ dt))

= P (N(t) = n− 1)P ( 1 event occurs in (t, t+ dt))

= e−λt (λt)
n−1

(n− 1)!
λdt dividing by dt.

f(t) = e−λt (λt)
n−1

(n− 1)!
λ

=
tn−1λne−λt

(n− 1)!

(3.6)

This again is the density of the Gamma distribution.
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Chapter 4

Homogeneous Poisson Process

The homogeneous Poisson process is a fundamental stochastic process which is simple, easy to
understand and possesses desirable mathematical and theoretical properties making it easy to
handle. It can be easily extended to more complicated and realistic situations Kingman (1993).

This chapter contains four definitions of the homogeneous Poisson process and proves that they
are equivalent.

4.1 Equivalent definitions

The Poisson process was developed over time by different people with differing opinions on how
to define it. One definition can lead to a conclusion which someone else decides to include as a
definition. Some definitions are shorter than others, some are more more plausible to beginners.
Other definitions can be abstracted and used in a more general context.

In this section we will discuss four definitions of the homogeneous Poisson process and show
that they are all equivalent to each other. This discussion will be in one dimension, usually time.
This will be extended to higher dimensions later.

Definition 3 (Statement A). N : [0,∞) → N is a homogeneous Poisson process with intensity
λ : [0,∞) → [0,∞) if:

(i) N(0) = 0

(ii) For any times 0 ≤ t0 < t1 < t2 < t3..... < tn−1 < tn < ∞ The random variables
N(tk)−N(tk−1), k = 1, 2, 3...n are mutually independent.

(iii) For any pair of times 0 ≤ t1 < t2, the random variable N(t2) − N(t1) is Poisson dis-
tributed with parameter λ(t2 − t1). This implies that the process is stationary.

Definition 4 (Statement B). N : [0,∞) → N is a homogeneous Poisson process with intensity
λ : [0,∞) → [0,∞) if:
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(i) N(0) = 0

(ii) The process has stationary and independent increments.

(iii) For ’small’ h, P (N(h) = 1) = λh+ o(h)

(iv) P (N(h) ≥ 2) = o(h).

Definition 5 (Statement C). N : [0,∞) → N is a homogeneous Poisson process with intensity
λ : [0,∞) → [0,∞) if: The waiting time between n events, Wn follows a Gamma Γ(n, λ)
distribution.

Definition 6 (Statement D). N : [0,∞) → N is a homogeneous Poisson process with intensity
λ : [0,∞) → [0,∞) if: The waiting time between successive events, or arrivals follows an
exponential M(λ) distribution.

4.2 Equivalence of the definitions

To show all four definitions are equivalent I will show that. B ⇔ A ⇔ C ⇔ D

B ⇒ A. This is easy. Many standard books such as (Ross, 1996, p. 60-63) contain a derivation.
Using definition B, a series of differential equations is set up for P (N(t) = n), n = 0, 1, 2....
This system is solved for n = 0, 1 And mathematical induction is used to prove that P (N(t) =
n) is equal to a Poisson distribution with parameter λt.

A ⇒ B. Parts (i) and (ii) agree. The number of events follows a Poisson distribution;

P (N(t) = n) =
e−λt(λt)n

n!
, n = 0, 1...

When n = 1 this becomes;
P (N(t) = 1) = e−λt(λt)

Using the power series expansion for the exponential function this becomes;

P (N(t) = 1) = (1− λt+
(λt)2

2!
− (λt)3

3!
+ o(λt))(λt)

= λt+ o(λt)

P (N(t) ≥ 2) = o(λt)

(4.1)

If t is small and λt = h. The result follows.

A ⇒ C. We assume that the number of events in a fixed length of time follows a Poisson dis-
tribution and want to show that the waiting time distribution to the nth event follows a Gamma
distribution.
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Using the duality equality Wn > t ⇔ N(t) < n
Let F be the cdf of Wn and f the pdf of Wn.

P (Wn > t) = P (N(t) < n)

1− F =
n−1∑
k=0

P (N(t) = k)

−f =
d

dt
[

n−1∑
k=0

P (N(t) = k)]

=
d

dt
([P (N(t) = 0) +

n−1∑
k=1

P (N(t) = k)]

=
d

dt
[e−λt +

n−1∑
k=1

e−λtλktk

k!
]

= −λe−λt +
n−1∑
k=1

e−λtλktk−1

(k − 1!)
−

n−1∑
k=1

e−λtλk+1tk

k!

= −λe−λt + λe−λt +

n−1∑
k=2

e−λtλktk−1

(k − 1!)
−

n∑
k=2

e−λtλktk−1

(k − 1)!

f =
e−λtλntn−1

(n− 1)!

(4.2)

Thus the waiting time pdf to the nth event is the Γ(n, λ) distribution.

C ⇒ A
Here we assume that the waiting time to the nth event follows the Gamma distribution and want
to show that the number of events in a fixed length of time follows the Poisson distribution. This
result from calculus will be needed very soon.

d

dx
((λx)ne−λx) = λ[n(λx)n−1e−λx − (λx)ne−λx]∫

λ[n(λx)n−1e−λx − (λx)ne−λx]dx = (λx)ne−λx (4.3)

Using the duality equality Wn ≤ t ⇔ N(t) ≥ n
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P (N(t) = n) = P (N(t) ≥ n)− P (N(t) ≥ (n+ 1))

= P (Wn ≤ t)− P (Wn+1 ≤ t)

=

∫ t

0

λ(λx)n−1e−λx

(n− 1)!
− λ(λx)ne−λx

n!
dx

=
1

n!

∫ t

0
λ[n(λx)n−1e−λx − (λx)ne−λx]dx

using 4.3

= [
(λx)ne−λx

n!
]t0

=
(λt)ne−λt

n!

(4.4)

This is the Poisson distribution for number of events with rate λt.

C ⇒ D

The Gamma pdf is f(t) = tn−1λne−λt

(n−1)! , t ≥ 0

Letting n=1 we get the exponential pdf f(t) = λe−λt, t ≥ 0

D ⇒ C
If the exponential is the waiting time between successive events then the Gamma is the waiting
time to the nth event using the previous section with the proof using mgf’s.

In addition we have a direct A ⇒ D
If no events occur in time t. Then we are stilll waiting for the first event.
P (W1 > t) = P (N(t) < 1) = P (N(t) = 0) = e−λt

Exponential waiting time to first event follows!

4.3 Length of observation interval

Our objective is to find a confidence interval for λ the intensity of a Poisson process, when λ
is the intensity then the number of events occurring per unit time follows a Poisson distribution
with parameter λ. If however, we are observing occurrences of some variable of interest over a
time interval [a, b], then the length of the interval is (b − a) units of time. N , the number of
observations follows a Poisson distribution with parameter λ(b− a).

N ∼ Pois(λ(b− a)).

[L(n), U(n)] from definition 1 above will give the confidence interval for λ(b − a) where n is
the actual observed value of N . To get a confidence interval for λ we need to divide the previous
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confidence interval for λ(b− a) by (b− a) .

[
L(n)

(b− a)
,
U(n)

b− a
]

Will give the confidence interval for λ.
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Chapter 5

Non-Homogeneous Poisson Process

The non-homogeneous Poisson process is defined. The principle of Maximum Likelihood Es-
timation is used to find the formula which needs to be maximised in order to fit an intensity
function. Four classes of possible intensity functions are introduced and we consider the vari-
ous R options such as numerical integration and optimisation which are needed to fit an intensity
function to the given data.

5.1 Motivation

The non-homogeneous Poisson process is a generalisation of the homogeneous Poisson process
which was defined in several different ways which were then shown to equivalent. And in a
similar way it can be defined by different but equivalent definitions. The definition below is easy
to understand, it’s consequence is easier to generalise and thus becomes part of the definition in
a more general setting. In one dimension, such as time we can have.

Definition 7. This is taken from (Ross, 2000, p.284-6) A counting process {N(t), t ≥ 0} is a
Non-homogeneous Poisson process with intensity function λ(t), t ≥ 0, if

1. N(0)=0.

2. {N(t), t ≥ 0} has independent increments.

3. P (N(t+ h)−N(t) ≥ 2) = o(h)

4. P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h)

A consequence of the above is that N(t) ∼ Pois(Λ(t)), where Λ(t) =
∫ t
0 λ(x)dx.

This can now be turned around and the consequence is used in the definition of a general Poisson
process.
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Definition 8. A Poisson process on a set D ⊆ Rd with intensity function λ : Rd → [0,∞) is a
random set Π ⊆ D if:

1. If A ⊆ D then |Π ∩ A| ∼ Pois(Λ(A)), where |Π ∩ A| is the number of points of Π in A
and

Λ(A) =

∫
A
λ(x)dx.

2. If A,B ⊆ are disjoint, then |Π ∩A| and |Π ∩B| are independent.

5.2 Maximum Likelihood Estimation of the intensity

Suppose we have data that comes from a non-homogeneous Poisson process and we want to find
the intensity function that gave rise to it. One way of doing it, is to use the principle of Maximum
Likelihood Estimate(MLE) to find the intensity function λ that maximises the likelihood of the
data occurring.

Suppose we have a sample of size n, π = {x1, x2...xn} from a Poisson process as described
above. Then the likelihood L(λ;π = {x1, x2...xn}) = f(π = {x1, x2...xn};λ) is the probabil-
ity of getting the sample π = {x1, x2...xn},

Let λ the intensity function be, λ : [0, T ] → R≥0.

Λ =

∫ T

0
λ(x)dx,

Probability of observing n points = e−ΛΛ
n

n!
,

Probability density of observation xi =
λ(xi)

Λ
,

(5.1)

Since the observations are independent of each other, P (π = {x1, x2...xn}) =
∏n

i=1
λ(xi)
Λ .

Likelihood of getting the sample π = {x1, x2...xn} = P (n) · P (π = {x1, x2...xn}|n).

L(λ;π = {x1, x2...xn}) = e−ΛΛ
n

n!

n∏
i=1

λ(xi)

Λ
.

If the sample is ordered x1 < x2 < x3 < .... < xn. Then the likelihood of the ordered sample
is the likelihood of the above unordered sample above multiplied by n! (Ross, 1996, p. 66-7).

Likelihood of ordered sample L(λ) = e−ΛΛ
n

n!
·

n∏
i=1

λ(xi)

Λ
· n!.

L(λ) = e−Λ ·
n∏

i=1

λ(xi) = e−
∫ T
0 λ(x)dx ·

n∏
i=1

λ(xi).
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The Log-Likelihood: l(λ) = log(L(λ)) = −
∫ T

0
λ(x)dx+

n∑
i=1

log λ(xi).

There are two practical points about finding the MLE. One, our intention is to find the function
λ(t) which maximises the Likelihood L(λ) but in practice it is usually easier to evaluate the
Log-Likelihood l(λ). Since the logarithm is a one to one function the values which maximise L
are the same as the ones that maximise l. L and log(L) are maximised at the same point. Sec-
ondly, our intention is to maximise L and l but most computer routines are written to minimise
functions. To maximise L or l is equivalent to minimising −L or − l.

5.3 Double checking the theory

The above theory developed MLE for the non-homogeneous Poisson process. To try to verify
the formula that was found for the MLE I will consider the degenerate case of the homogeneous
Poisson process. The MLE will be found in two different ways. From first principles and from
the Log-Likelihood formula above. If the two answers do not agree then we have problems and
the above formula and theory are probably wrong. If however the two answers agree we have
extra evidence(Not proof) that the formula and theory are correct.

Method 1 (Direct). Consider a homogeneous Poisson process with rate λ, we observe the pro-
cess for a time T and count n observations. The likelihood of this occurring L = exp(−λT ) (λT )n

n! .
The Log-Likelihood l = −λT + n log(λT )− log(n!). Differentiating l w.r.t. λ gives λ̂ = n

T

Method 2 (Using Non-Linear formula for MLE). Suppose we have a polynomial of degree zero
λ(x) = a0 ∫ T

0
a0dx = a0T

n∑
i=1

log λ(xi) =

n∑
i=1

log(a0) = n log(a0).

l = n log(a0)− a0T

Differentiating l w.r.t a0 gives â0 = n
T .

a0 is the rate. Both methods give identical results. This increases confidence that the theory
developed in the previous section is in fact correct.

5.4 Fitting an intensity function

Using the principle of Maximum likelihood we can try fitting an intensity function to some real
data. Trying to find a ‘best’ fitting intensity function λ(t) is not practical unless we restrict our
search to specified families of functions.
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The familes that will now be considered are;

1. Polynomials of the form λ(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n with the restriction that
λ(x) ≥ 0 ∀x.

2. Fourier(periodic) series λ(x) = a0 +
∑n

j=1 bj sin(2π
x
T fj) + cj cos(2π

x
T fj) with the

restriction that λ(x) ≥ 0 ∀x.

3. Exponentials of polynomials λ(x) = exp(a0 + a1x+ a2x
2 + · · ·+ anx

n).

4. Exponentials Fourier series λ(x) = exp
(
a0 +

∑n
j=1 bj sin(2π

x
T fj) + cj cos(2π

x
T fj)

)
.

5.4.1 Numerical Integration in R

Our next objective is to find the intensity function λ(t) such that the Log-Likelihood function:
l(λ) = log(L(λ)) = −

∫ T
0 λ(x)dx+

∑n
i=1 log λ(xi) is maximised. The log-likelihood function

is composed of two components, an integral and a summation. Considering the four families
of functions we are to investigate only the first can be integrated explicitly. The others require
numerical integration. Our programming language of choice is ‘R’. In R, numerical integration
of a function of one variable is performed by the integrate function.

The integrate function was verified by examples for two reasons, firstly to check that it was
being used correctly and to double check that it actually worked!

The two examples used to verify integrate were
∫ 20
0 e2+3xdx and

∫∞
0 e−

x2

2 .

g <- function(y,b) {exp(b[1]+b[2]*y+b[3]*yˆ2)}

L6=integrate(g,0,Inf,c(0,0,-0.5))
L6$value

[1] 1.253314

The example code above integrates the positive half of the standard normal distribution. As
expected

√π
2 = 1.253314 approx.

5.4.2 Numerical Optimisation in R

In R there are several numerical optimisation functions. Some of them appear to duplicate the
work of others. The reasons behind this are that numerical optimisation is a complex subject and
there is no one best method. The methods vary in what input they require. Some only require
the function to be minimised, others want the gradient supplied as well. Where the gradient

34



is not supplied it is usually approximated by finite difference methods. Some of the methods
are more efficient than others but that depends on the function being optimised. Some methods
work where others fail. Optimisation functions built into R are:

optim.

Described as a general-purpose optimization based on NelderMead, quasi-Newton and conjugate-
gradient algorithms. It includes an option for box-constrained optimization and simulated an-
nealing.

This includes a choice of the following methods: (”Nelder-Mead”, ”BFGS”, ”CG”, ”L-BFGS-
B”, ”SANN”, ”Brent”).

Another isnlm described as carrying out a minimization of the function f using a Newton-type
algorithm.

Another one is nlinb described as unconstrained and constrained optimization using PORT
routines. The PORT documentation is at http://netlib.bell-labs.com/cm/cs/cstr/153.pdf.
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Chapter 6

Results

The main data which was analysed consists of times measured in seconds of hits on a website
over a thirty day period. It is our belief that the data does not follow a homogeneous Poisson
process and the rate may vary by time of day and there also may be a trend present. The intention
is to fit a non-homogeneous Poisson process model to the data. The data which is actually
anaylsed here is in three data files. One file consists of the full data. Another is a systematic one
tenth sample of the full data and the third is yet another one tenth sample of the second sampled
file. The reason for using sampled data files is to allow faster program execution times in the
event where program execution time on the full file is so long that it becomes impractical to run.
Taking a 10% and a 1% sample of the data should not affect greatly the models that are fitted
since periods of high activity and periods of low activity are being scaled evenly and the relative
intensities in different time periods should not be affected. Although we must keep in mind the
danger that we may be missing some vital feature of the data by throwing away 90% and 99%
of the available information.

The initial investigation of the data was a graphical analysis, this was exploratory in nature.
”John Tukey ” (Tukey, 1977, p. 3) stated: ‘Exploratory data analysis can never be the whole
story, but nothing else can serve as the foundation stone–as the first step.’

The data covered a thirty day period and the full data file had 57,601 data values in seconds.
The task was to display graphically this data in a meaningful way. The method chosen was to
partition the data into equal length time periods and count the number of events in each partition.
We assumed that in each partition the count came from a homogeneous Poisson process. Given
that the count follows a sample from a Poisson distribution, the parameter of the Poisson distri-
bution is estimated together with the lower and upper confidence limits. These three estimates
are based on a count which depends on the length of the time period of the partition. These are
then ‘scaled’ or converted to a Poisson rate per unit time, see section 4.3.

Two obvious ways of controlling the way the data is displayed are changing the number of
partitions and the confidence coefficient. On the horizontal axes we have the equally spaced
partitions of time. The vertical axes represents the Poisson rate per unit time. Each partition
is shown as a grey rectangle. The middle horizontal line through the box is the estimate of the
Poisson rate in that partition, the top and bottom of the box are the upper and lower confidence
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limits of the estimate. The data covers a thirty day period so it is desirable that the number of
partitions should be a multiple of thirty. Thirty partitions groups the data by day, sixty groups it
into 12 hour periods, ninety groups into 8 hour periods etc. The confidence coefficient controls
the size or length of the confidence interval In figures 6.1 to 6.8 we display the data with a 50%
confidence coefficient as the number of intervals increases and the size of the interval decreases.
A periodic pattern emerges.

With the data grouped by day there is no obvious pattern. In fact the intensity function looks
almost uniform there is no evidence of a trend. As the grouping is refined into smaller time
periods a pattern emerges. Most of the data is homogeneous near the bottom with a periodic
pattern emerging of evenly spaced peaks near the top. There are in fact thirty, evenly spaced
peaks corresponding to the thirty days that the data covers. The magnitude of these peaks looks
constant with no obvious trend. From this graphical analyses I can see a steady state periodic
daily pattern with no obvious linear trend over the thirty day period.

The original intention was to fit four classes of functions to the data.

Polynomials of the form λ(x) = a0 + a1x + a2x
2 + · · · + anx

n with the restriction that
λ(x) ≥ 0 ∀x. However looking at the graphs it is obvious that polynomials will not be a
suitable fit. From 6.1 it is possible to conclude that there is no trend, especially if we ignore
the high outlier on the right end. A trend-less fit of λ(x) = a0 is just a homogeneous intensity,
these polynomials cannot model the periodic nature of the data. This model will no longer be
considered.

Exponentials of polynomials λ(x) = exp(a0 + a1x+ a2x
2 + · · ·+ anx

n) were tried on small
test data and gave results. However there is no way to model the periodic nature of the data.
And the exponential often went out of bounds and failed to give a result. This model will no
longer be considered.

Fourier(periodic) series λ(x) = a0 +
∑n

j=1 bj sin(2π
x
T fj) + cj cos(2π

x
T fj) are periodic in

nature and were investigated. However we still have to consider the restriction λ(x) ≥ 0). This
restriction however is not modelled by the built in R routines and needs 3rd party R routines to
implement. This class of models will be considered later if time permits.

Exponentials of Fourier series λ(x) = exp
(
a0 +

∑n
j=1 bj sin(2π

x
T fj) + cj cos(2π

x
T fj)

)
will

ensure that the intensity function will always be non-negative. This model is periodic and is
considered here.

The parameters that will be estimated by the program are {a0, bj , cj} j = 1 · · ·n. The param-
eters which are supplied by the user are {T, x, n, fj} j = 1 · · ·n. In a more complex program
it may be desirable to use the program to also estimate fj , however, here I estimated fj by sight
from the graphs 6.7 and 6.8. It is clear that there is a periodic daily pattern. In the program,
x is the data in seconds, T is the number of seconds in a day, so x/T is in days and fj is the
frequency per day. The frequencies used were f1 = 1, f2 = 2f1, f3 = 3f1 etc.

The optimization program was verified by running it using two different optimization routines.
optim and nlm on the same data, both gave nearly identical results. I chose to use optim
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Figure 6.1: Confidence intervals with a daily grouping. No obvious linear trend or any other
pattern. Could be a homogeneous Poisson process.
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Figure 6.2: Confidence intervals with a 12 hour grouping. A lot more variability. A suggestion
of periodicity at the lower end ?
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Figure 6.3: Confidence intervals with a 8 hour grouping. The data sees to be splitting itself into
two large groups with outliers at the top.
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Figure 6.4: Confidence intervals with a 6 hour grouping. More clear evidence of data splitting
into two groups.
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Figure 6.5: Confidence intervals with a 4 hour grouping. Even more evidence of two groups
with a hint that the top group may be periodic.
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Figure 6.6: Confidence intervals with a 3 hour grouping. The upper group is looking more and
more periodic.
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Figure 6.7: Confidence intervals with a 2 hour grouping. The two group periodic pattern is still
there with some intermediate points.
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Figure 6.8: Confidence intervals with a 1 hour grouping. It is now clear that we have periodic
peaks.
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with the default optimization method since it ran on the full data set with no problems and only
took a few seconds. If the program had failed or taken too long to converge I would have tried
using different optimization methods and or used one of the smaller data sets.

I decided that initial verification of the model would be graphical in nature. The program would
fit the exponential Fourier model to the full data set and the fitted intensity curve coloured red
would be superimposed on the grey partitioned data rectangles with the corresponding confi-
dence intervals. If the fitted curve corresponds closely with the data then it would be considered
to be a good fit. The display of the grey data can be controlled by varying the number of par-
titions and the confidence coefficient. The red line of the fitted model is independent of the
number of partitions. It is dependent on and is calculated from whole data file so it does not
change as we vary the number of partitions. The fitted model can be controlled by changing n

in λ(x) = exp
(
a0 +

∑n
j=1 bj sin(2π

x
T fj) + cj cos(2π

x
T fj)

)
. And fj = jf1.

If n = 0 then we are fitting a constant, equivalent to a homogeneous Poisson process with
intensity function. λ(x) = exp(a0) = µ. In figures 6.9 and 6.10 we see a horizontal red line
representing the homogeneous rate. It passes through the data as an overall average. Although
it is a good fit passing through the center of the data, it does not model the periodic nature of the
data shown in 6.10.

The rate is the (number of observations in 30 days) / (Total time in seconds in 30 days) =
57601/2592000 = 0.022 and this corresponds to the height of the red line in 6.9 and 6.10.

The next step is to try to model periodicity by setting n to 1. This corresponds to the intensity
function λ(x) = exp

(
a0+b1 sin(2π

x
T f1)+c1 cos(2π

x
T f1)

)
. The graphs 6.11 to 6.14 show how

the fitted function is superimposed on the data. As the number of partitions increased from 30,
60, 90 then 120. The apparent goodness of fit changed. The fitted red function stays the same.
The gray summary rectangles change. The more partitions we have means that each rectangle
contains less data points and there is more variability displayed. The high data peaks become
higher and the low data troughs become lower. With 30 partitions each rectangle represents the
intensity for the whole day. With 60 partitions, each rectangle represents the intensity for half a
day. Graph 6.13 with a 8 hour grouping looks best.

The next step is to try to model periodicity by setting n to 2. This corresponds to the intensity
function λ(x) = exp

(
a0+b1 sin(2π

x
T f1)+c1 cos(2π

x
T f1)+b2 sin(2π

x
T f2)+c2 cos(2π

x
T f2)

)
.

And f2 = 2f1. The fitted model now has two peaks and troughs per day fig 6.15 shows the fitted
model superimposed on a 12 hour grouping. It is difficult to see the pattern due to the peaks
being very cramped together. The rotated graph in fig 6.16 is much clearer. In fig 6.17 with
8 hour groups the main peaks and troughs match the data. The secondary peaks and troughs
are not as clear. Although the troughs are a better fit than the peaks. One interesting feature is
the two high outliers on days 23 and 27. These correspond to the secondary peaks. A further
refinement to a 6 hour grouping in fig 6.18 shows The main peaks match best the secondary
peaks correspond to three high outliers. The troughs fitting is average. A further refinement to
4 hour grouping in fig 6.19 shows an improvement in the fit. The main peaks match, secondary
peaks can be identified on several days and the troughs match.

The next step is to try to model periodicity by setting n to 3. This corresponds to the intensity
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Figure 6.9: Confidence intervals with a 1 day grouping and a homogeneous rate fitted in red.
n=0.

48



0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Interval

E
st

im
at

e 
an

d 
co

nf
id

en
ce

 li
m

its

Figure 6.10: Confidence intervals with a 1 hour grouping and a homogeneous rate fitted in red.
n=0.
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Figure 6.11: Confidence intervals with a 1 day grouping and an intensity function with one
Fourier level fitted in red. The one day grouping is not fine enough to show any periodicity.
n=1.
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Figure 6.12: Confidence intervals with a 12 hour grouping. We are starting to see the peaks and
troughs in the data matching the peaks and troughs in the model. n=1.
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Figure 6.13: Confidence intervals with a 8 hour grouping. It is now clear that the peaks and
troughs in the data matching the peaks and troughs in the model. n=1.
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Figure 6.14: Confidence intervals with a 6 hour grouping. We can still see the peaks and troughs
in the data matching the peaks and troughs in the model although the random variability in the
data is starting to mask it. n=1.
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n a0 b1 c1 b2 c2 b3 c3
0 -3.806
1 -3.832 0.317 -0.0749
2 -3.877 0.285 -0.104 0.0487 -0.457
3 -3.922 0.0481 -0.528 -0.105 -0.412 -0.475 0.0530

Table 6.1: Table of estimated parameter values for the exponential Fourier model.

function λ(x) = exp
(
a0+b1 sin(2π

x
T f1)+c1 cos(2π

x
T f1)+b2 sin(2π

x
T f2)+c2 cos(2π

x
T f2)+

b3 sin(2π
x
T f3) + c3 cos(2π

x
T f3)

)
. And f2 = 2f1, f3 = 3f1. The fitted model now has three

peaks and troughs per day. In figs 6.20 and 6.21 the main peaks and troughs correspond to the
data. However the third level peaks and troughs are becoming difficult to see clearly.

Table 6.1 contains the values of the fitted parameters which were estimated and used to draw the
red continous line fitted models. The value of a0 is almost constant for all n values. However
is decreases slowly as n increases. For n = 0 exp(a0) = exp(−3.806) = 0.022 This is the
value of the intensity of the homogeneous Poisson process for the whole data, as can be seen in
fig 6.9 and 6.10.

My conclusion is that from looking at the graphs 6.9 to 6.10, The fitted models do fit the data.
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Figure 6.15: Confidence intervals with a 12 hour grouping. The graph is very cramped, it is
difficult to see the fitted model clearly. n=2.
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Figure 6.16: Confidence intervals with a 12 hour grouping. We are starting to see the peaks and
troughs in the data matching the peaks and troughs in the model. n=2.
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Figure 6.17: Confidence intervals with a 8 hour grouping. It is now clear that the main peaks
and troughs in the data matching the peaks and troughs in the model. The secondary troughs are
a better fit than the secondary peaks. Note the two high outliers corresponding to the secondary
peaks! n=2. 57
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Figure 6.18: Confidence intervals with a 6 hour grouping. The main peaks match best the
secondary peaks correspond to three high outliers. The troughs fitting is average. n=2
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Figure 6.19: Confidence intervals with a 4 hour grouping. Both the main and secondary peaks
and troughs correspond to the data. n=2.
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Figure 6.20: Confidence intervals with a 4 hour grouping. The main peaks and troughs corre-
spond to the data. The secondary troughs are also a fairly good fit. The secondary peaks are a
worse fit. It is very difficult to see how the tertiary peaks and troughs match the data. n=3.
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Figure 6.21: Confidence intervals with a 3 hour grouping. With the data rectangles more ex-
treme is is easier to see that the main peaks and troughs correspond to the data. The secondary
troughs are a fairly good fit. The secondary peaks are a worse fit. It is very difficult to see how
the tertiary peaks and troughs match the data. n=3.61
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Chapter 7

Further work

Much more theoretical work could be done. This can be through an Internet search, researching
through standard textbooks such as (Kutoyants, 1998) and independent original research. The
theory that was neglected here is mostly on the formal statistical inference specific to advanced
forms of the Poisson process.

The frequencies were assumed to be f1 = 1, fn = nf1. In a more general program the frequen-
cies could be estimated from the data itself.

Four classes of models were considered in this work. The model could be extended to other
functional forms.

The computing could be extended in several directions. Other optimisation routines could be
used as well as different options in the existing routines. We could try supplying the gradient
function explicitly to the routines rather than having the routine approximating the gradient
by finite difference methods. The program could also be properly designed and rewritten in a
different language with a user friendly interface.
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Chapter 8

Program code

The program was written in the R language. Please note that many of the indentations in the
original R program have automatically been altered by the typesetting program used to write
this dissertation !

# 1 - periodic model for the intensity lambda

seconds.per.day <- 24 * 60 * 60

f = function(x, a) {
n = (length(a) - 1) / 2
res = rep.int(a[1], length(x))
if (n > 0) {

for (j in 1:n) {
fj = j / seconds.per.day
res = res+a[2*j]*sin(fj*2*pi*x)+a[2*j+1]*cos(fj*2*pi*x)

}
}
return(res)

}

lambda <- function(x, a) {
exp(f(x, a))
}

# testing:
# t <- seq(0, seconds.per.day, length=100)
# plot(t, lambda(t, c(1, 1, 0)), type="l")
# plot(t, lambda(t, c(1, 0, 1)), type="l")
# plot(t, lambda(t, c(1, 0, 0, 1, 0)), type="l")

65



# 2 - maximum likelihood fit for lambda

neg.log.likelihood <- function(a, x, L, U) {
integrate(lambda, L, U, a, subdivisions=5000)$value - sum(f(x, a))
}

find.optimal.parameters <- function(n, data, L, U, iterations=1000) {
a <- rep.int(0, 2*n+1)
res <- optim(a, neg.log.likelihood, NULL,
data, L, U,
control=list(maxit=iterations))
if (res$convergence != 0) {
cat("optim did not converge (code ", res$convergence,
"), use more iterations\n", sep="")
}
res$par
}

# testing:
x <- scan("data3")
# find.optimal.parameters(2, x, 0, 30*seconds.per.day, iterations=1)
# find.optimal.parameters(2, x, 0, 30*seconds.per.day, iterations=100)
# find.optimal.parameters(2, x, 0, 30*seconds.per.day, iterations=1000)

# 3 - Confidence Intervals

interval.counts <- function(data, bins, a, b) {
counts <- c()
for (i in 1:bins) {
lower = a + (i-1)*(b-a)/bins
upper = lower + (b-a)/bins
counts[i] = sum(data>=lower & data<upper)
}
return(counts)
}

get.confidence.interval <- function(x, alpha=0.05) {
if (x == 0) {

L <- 0
U <- - log(alpha)

} else {
f <- function(lambda) {

ppois(x, lambda) - alpha/2
}
lambda.upper <- x + (1 + sqrt(2*x*alpha + 1)) / alpha
U <- uniroot(f, c(x, lambda.upper))$root
g <- function(lambda) {

ppois(x - 1, lambda, lower.tail=FALSE) - alpha/2
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}
L <- uniroot(g, c(0, x))$root

}
return(c(L,U))

}

#Input a vector of counts
#Output the lower and upper confidence limits for these counts
get.confidence.intervals <- function(counts, alpha) {
U <- c()
L <- c()

for (i in 1:length(counts)) {
UL = get.confidence.interval(counts[i], alpha)
L[i] = UL[1]
U[i] = UL[2]
}
return(c(L,U))
}

# 4 - plot the result

# bins= Number of intervals
do.one.plot = function(data,a,b,bins, modes, alpha=0.05, iterations=1000) {
par(oma=c(0, 0, 0, 0))
par(mai=c(0.8, 0.8, 0.1, 0.1))

counts = interval.counts(data, bins, a, b)
lud3 = get.confidence.intervals(counts, alpha)

# scale
est = counts * bins/(b-a)
LU = lud3 * bins/(b-a)

# draw the axes and labels
plot(0, 0, xlim=c(a,b)/seconds.per.day, ylim=c(0,max(LU)),
type="n",
xlab="Interval", ylab="Estimate and confidence limits")

# draw the boxes for the confidence intervals
for (i in 1:bins) {
x0 = a + (b-a) * (i-1) / bins / seconds.per.day
x1 = a + (b-a) * i / bins / seconds.per.day
rect(x0, LU[i], x1, LU[i+bins], col="gray", border=NA)
segments(x0=x0, y0=est[i], x1=x1,y1=est[i])
segments(x0=x0, y0=LU[i], x1=x1, y1=LU[i])
segments(x0=x0, y0=LU[i+bins], x1=x1, y1=LU[i+bins])
}
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# draw the line for the intensity
t.sec = seq(a, b, length.out=1000)
t.day = t.sec / seconds.per.day

params <- find.optimal.parameters(modes, data, a, b, iterations)
lam <- lambda(t.sec, params)
lines(t.day, lam, col="red")

#lines(t.day, lambda2, col="blue")
}

do.one.pdf = function(data, a, b, bins, modes, alpha=0.05, iterations=1000) {
filename = sprintf("m58713-%d-%d-%02d.pdf", bins, modes, round(alpha*100))
pdf(filename, width=6, height=7)
do.one.plot(data, a, b, bins, modes, alpha, iterations)
dev.off()
}

x <- scan("data3")
do.one.pdf(x, 0, 30*seconds.per.day, 240, 3, iterations=5000)
do.one.pdf(x, 0, 30*seconds.per.day, 120, 1, iterations=5000)
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