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These are example solutions for the statistical computing practical, together with a marking scheme.

Task 1
If X is the wind speed (in miles per hour), then the Monte Carlo Estimate for the probability p = P (X ≥ 40)
is

p̂ = 1
N

N∑
j=1

1[40,∞)(Xj),

where the Xj are i.i.d. copies of X. We can use the following R code to compute this estimate. This uses the
function wind_speed() given on the practical task sheet.
wind_speed <- function(n, w, mu, sigma) {

k <- length(w)
i <- sample(k, n, replace = TRUE, prob = w)
rlnorm(n, mu[i], sigma[i])

}
w <- c(0.1, 0.4, 0.5)
mu <- c(2.1, 1.6, -0.5)
sigma <- c(0.55, 0.7, 0.6)

N <- 1e6
X <- wind_speed(N, w, mu, sigma)
p.MC <- mean(X >= 40)
p.MC

## [1] 0.000756

Here we used, somewhat arbitrarily, N = 106. We will revisit this choice of N below. The R output shows
that the computed estimate is p̂ = 0.000756 = 7.56 · 10−4.

The Root Mean Squared Error (RMSE) for this estimator is

RMSE(p̂) =

√
Var

(
1[40,∞)(X)

)
N

where the variance can be approximated using the sample variance of the samples already used in the Monte
Carlo Estimate:
RMSE.MC <- sqrt(var(X >= 40) / N)
RMSE.MC

## [1] 2.748507e-05

Thus, the RMSE is approximately 2.75 · 10−5. We have RMSE(p̂)/p̂ = 0.036, i.e. the RMSE is nearly 4% of
the estimated value. One could try to reduce the RMSE by increasing N , but since we will try an improved
method to estimate p in the next task, we here accept this estimate as being ‘good enough’.
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Marking criteria:

• The estimate is computed correctly.
• The RMSE is computed correctly.
• There is some (possibly very short) discussion about how N was chosen.

Task 2
The importance sampling estimate for p is given by

p̂IS = 1
N

N∑
j=1

1[40,∞)(Yj)ϕ(Yj)
ψ(Yj) ,

where ϕ is the density of X and the Yj are i.i.d. samples with density ψ. The distribution of the samples
Yj can be chosen arbitrarily, as long as ψ(y) > 0 for all y ≥ 40, but the method is most efficient if ψ(y) is
approximately proportional to 1[40,∞)(y)φ(y).

Here, the distribution of X is a mixture of log-normal distribution and thus the density ϕ is

ϕ(x) =
3∑

k=1
wkφ(x;µk, σk),

where φ(x;µk, σk) is the density of the log-normal distribution (given on the practical task sheet or available
as dlnorm() in R). We can compute ϕ in R using the following function:
phi <- function(x) {

phi1 <- dlnorm(x, mu[1], sigma[1])
phi2 <- dlnorm(x, mu[2], sigma[2])
phi3 <- dlnorm(x, mu[3], sigma[3])
w[1]*phi1 + w[2]*phi2 + w[3]*phi3

}

Here is a plot of ϕ:
x <- seq(0, 30, length.out = 300)
plot(x, phi(x), type = "l")
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And a plot of 1[40,∞)ϕ:
x <- seq(38, 60, length.out = 300)
plot(x, phi(x)*(x >= 40), type = "l",

ylab = expression(f(x)*1[A](x)))
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The second plot suggests that a good distribution for Y might be a shifted exponential distribution: Y ∼
40 + Exp(λ). Experiments, like in the following plot, show that λ ≈ 0.15 might be a good choice of rate for
the exponential distribution.
x <- seq(38, 60, length.out = 300)
plot(x, 1500*phi(x)*(x >= 40), type = "l", ylab = "")
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lines(x, dexp(x-40, rate=0.15), col = "red")
legend("topright",

legend = c(expression(c %.% f(x)*phi(x)), expression(psi(x))),
col = c("black", "red"), lwd = 2)

40 45 50 55 60

0.
00

0.
04

0.
08

0.
12

x

c ⋅ f(x)φ(x)
ψ(x)

In the plot the function ϕ(x)1[40,∞)(x) is scaled by the (experimentally determined) factor 1500 to make it
visible on the same scale as the exponential density.

The importance sampling estimate can be computed in R using code like the one shown below. Since Y ≥ 40
is automatically true here, it is not required to include the indicator function in the R code.
psi <- function(x) dexp(x - 40, rate = 0.15)

N <- 1e6
Y <- rexp(N, rate = 0.15) + 40
p.IS <- mean(phi(Y) / psi(Y))
p.IS

## [1] 0.0007621195

The result is very similar to the result from the basic Monte Carlo method, so hopefully our implementation
is correct.

The root mean squared error for this estimate is

RMSE(p̂IS) =

√
1
N

Var
(

1[40,∞)(Y )ϕ(Y )
ψ(Y )

)
.

Again, the variance in this formula can be approximated using the sample variance of the samples used in the
Importance Sampling Estimate:
RMSE.IS <- sqrt(var(phi(Y) / psi(Y)) / N)
RMSE.IS

## [1] 5.250842e-07
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We note that the error obtained here is very small compared to the estimate p̂, so the chosen N was large
enough.

Since we used the same N for both estimates, the RMSE values are directly comparable: For N = 106 the
basic Monte Carlo method has RMSE 2.75 · 10−5 and the Importance Sampling method has RMSE 5.25 · 10−7.
Thus, for fixed sample size, Importance Sampling has considerably smaller error than basic Monte Carlo or,
conversely, the Importance Sampling needs much fewer samples to achieve the same level of error than Monte
Carlo.

Marking Criteria:

• The density of X is determined correctly (this was not done in lectures, so should get some credit)
• The estimate and RMSE are computed correctly.
• The distribution of Y is chosen well and the choice is explained well.
• There is some (possibly very short) discussion about how N was chosen.
• There is some meaningful comparison of the RMSE for the two estimates.

Task 3
(Note that the roles of f and f̃ in the practical are swapped, compared to the notation used in the book.)

We can compute the non-normalised target density f̃ in R as follows.
x <- c(0.50, 1.67, 2.22, 0.22, 4.36)
pi <- function(s) dexp(s)
tilde.f <- function(s) {

phi1 <- dlnorm(x[1], 0, s)
phi2 <- dlnorm(x[2], 0, s)
phi3 <- dlnorm(x[3], 0, s)
phi4 <- dlnorm(x[4], 0, s)
phi5 <- dlnorm(x[5], 0, s)
pi(s) * phi1 * phi2 * phi3 * phi4 * phi5

}

A plot of f̃ is shown below. The plot shows that f̃ is unimodal, with a maximum at s ≈ 1.
s <- seq(0, 5, by=0.02)
par(mai = c(0.8, 0.9, 0.1, 0.1))
plot(s, tilde.f(s), type="l", ylab = expression(tilde(f)(s)))
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To implement envelope rejection sampling, we need to choose a proposal density
g which is easy to sample from, and such that we can find a constant c with f̃(s) ≤ cg(s) for all s ≥ 0. The
method is most efficient if c is large. To achieve this, we should choose g to be approximately proportional to
f̃ , and in particular g(s) should be large for s ≈ 1. Also, g must have heavy enough tails to cover the tails
of f̃ .

Attempt 1: Use N (1, 1)-distributed proposals.
s <- seq(0, 6, by=0.02)
par(mai = c(0.8, 0.9, 0.1, 0.1))
plot(s, tilde.f(s) / dnorm(s, mean = 1), type = "l",

ylab = expression(tilde(f)(s)/g(s)))
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This does not work: the ratio starts increasing as s → ∞ and clearly is not bounded: the tails of f̃ are ‘heavier’
than these of a normal distribution. (Closer inspection of the formula for f̃ reveals that f̃(s) ∝ exp(−s)/s5

as s → ∞.)

Possible choices of the proposal distribution include:

• Gamma distribution: To make sure that the gamma distribution has heavy enough tails, we need
scale ≤ 1.

• Exponential distribution: the rate must be λ ≤ 1.

Attempt 2: Use a Gamma distribution. After a bit of experimenting we choose shape = 1.5 and scale = 1,
to get a reasonably small value of c. The following plot shows that f̃/g seems to be bounded by c = 0.00028.
(To allow for numerical error, we leave a small gap between the bound and the numerical ratio.)
s <- seq(0, 6, by=0.02)
par(mai = c(0.8, 0.9, 0.1, 0.1))
plot(s, tilde.f(s) / dgamma(s, 1.5, 1), type = "l", ylim = c(0, 0.0003),

ylab = expression(tilde(f)(s)/g(s)))

c <- 0.00028
abline(h = c, col = "blue")
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Now we can implement envelope rejection sampling:
N <- 10000
S <- numeric(0)
while (length(S) < N) {

prop <- rgamma(1, 1.5, 1)
U <- runif(1)
if (c * dgamma(prop, 1.5, 1) * U <= tilde.f(prop)) {

S <- c(S, prop)
}

}

We plot a histogram of the samples together with the non-normalised density f̃ . Since the histogram has the
same shape as the graph of f̃ , hopefully our implementation is correct.
s <- seq(0, 5, by=0.02)
par(mfrow = c(2, 1), mai = c(0.8, 0.85, 0.1, 0.1))
plot(s, tilde.f(s), type = "l", ylab = expression(tilde(f)(s)))
hist(S, prob = TRUE, main = NULL, breaks=100, xlim=c(0, 5))
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To compare the posterior to the prior we can either compare the densities, or the histograms.
s <- seq(0, 5, by=0.02)
par(mfrow = c(2, 1), mai = c(0.8, 0.85, 0.1, 0.1))
plot(s, pi(s), type = "l", ylab = expression(pi(s)))
plot(s, tilde.f(s), type = "l", ylab = expression(tilde(f)(s)))
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par(mfrow = c(2, 1), mai = c(0.8, 0.8, 0.1, 0.1))
S0 <- rexp(N)
breaks <- seq(0, max(S0)+0.1, by=0.1)
hist(S0, breaks=breaks, prob=TRUE, main = NULL, xlab="prior")
hist(S, breaks=breaks, prob=TRUE, main = NULL, xlab="posterior")
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Both sets of pictures show that the posterior is much more concentrated than the prior. This is, because the
posterior includes additional information about σ from the observations.

Alternatively, one could also compare the distributions using statistical measures like the mean and the
variance.

Marking Criteria:

• The plot of f̃ is correct and has reasonable labels.
• c and g are chosen appropriately.
• In case problems with the tails have been overlooked, any resulting discrepancies have been noticed.
• Envelope Rejection Sampling has been implemented correctly.
• The histogram of the generated samples is correct and has reasonable labels.
• There is some meaningful comparison between the prior and posterior.
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