MATH5835M Statistical Computing
 Exercise Sheet 5 (answers)

https://www1.maths.leeds.ac.uk/~voss/2023/MATH5835M/
Jochen Voss, J.Voss@leeds.ac.uk
2023/24, semester 1

Answer 12. In a transition matrix, the rows must sum to 1 and therefore we need $\alpha_{1}=0.6$, $\alpha_{2}=0.1$ and $\alpha_{3}=0.6$. From lectures we know that the condition for π to be a stationary distribution is $\pi^{\top} P=\pi^{\top}$, i.e.

$$
\left(\begin{array}{lll}
\pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)\left(\begin{array}{ccc}
0.4 & 0.6 & 0.0 \tag{1}\\
0.3 & 0.1 & 0.6 \\
0.0 & 0.6 & 0.4
\end{array}\right)=\left(\pi_{1} \pi_{2} \pi_{3}\right)
$$

Together with the condition that π is a probability vector, we get a system of four equations:

$$
\begin{aligned}
\frac{4}{10} \pi_{1}+\frac{3}{10} \pi_{2} & =\pi_{1} \\
\frac{6}{10} \pi_{1}+\frac{1}{10} \pi_{2}+\frac{6}{10} \pi_{3} & =\pi_{2} \\
\frac{6}{10} \pi_{2}+\frac{4}{10} \pi_{3} & =\pi_{3} \\
\pi_{1}+\pi_{2}+\pi_{3} & =1
\end{aligned}
$$

We have four equations for three unknowns, so one of the equations is redundant. Leaving out any of the first three equations, we can solve this system to get

$$
\pi_{1}=1 / 5, \quad \pi_{2}=2 / 5, \quad \pi_{3}=2 / 5
$$

An alternative way to obtain the same solution is to observe the fact that equation (1) implies that π is an eigenvector of P^{\top} with eigenvalue 1 . Using R we get the same result as above:

```
> P <- matrix(c(.4, .3, 0, .6, .1, .6, 0, .6, .4), 3, 3)
> P
    [,1] [,2] [,3]
[1,] 0.4 0.6 0.0
[2,] 0.3 0.1 0.6
[3,] 0.0
> eigen(t(P))
eigen() decomposition
$values
[1] 1.0 -0.5 0.4
$vectors
[,1] [,2] [,3]
[1,] 0.3333333 0.2672612 7.071068e-01
[2,] 0.6666667-0.8017837-3.561232e-16
[3,] 0.6666667 0.5345225 -7.071068e-01
> pi <- eigen(t(P))$vectors[,1]
> pi / sum(pi)
[1] 0.2 0.4 0.4
```

Answer 13. Rather than working with the definition of a stationary density directly, for an $\operatorname{AR}(1)$ process it is easier to use the fact that all X_{k} are normally distributed, and to just find the mean and variance which make the process stationary. From this we can then get the required density.
Assume that $X_{k-1} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then

$$
\mathbb{E}\left(X_{k}\right)=\mathbb{E}\left(\alpha X_{k-1}+\varepsilon_{k}\right)=\alpha \mathbb{E}\left(X_{k-1}\right)+\mathbb{E}\left(\varepsilon_{k}\right)=\alpha \mu+0=\alpha \mu
$$

and

$$
\operatorname{Var}\left(X_{k}\right)=\operatorname{Var}\left(\alpha X_{k-1}+\varepsilon_{k}\right)=\alpha^{2} \operatorname{Var}\left(X_{k-1}\right)+\operatorname{Var}\left(\varepsilon_{k}\right)=\alpha^{2} \sigma^{2}+1
$$

If the process is stationary, X_{k} has the same distribution as X_{k-1}, and in particular has the same mean and variance. From this we get the two equations $\mu=\alpha \mu$ and $\sigma^{2}=\alpha^{2} \sigma^{2}+1$. Solving these equations, we find $\mu=0$ and $\sigma^{2}=1 /\left(1-\alpha^{2}\right)$. Thus the stationary distribution of the process is $\mathcal{N}\left(0,1 /\left(1-\alpha^{2}\right)\right)$, with density

$$
\pi(x)=\sqrt{\frac{1-\alpha^{2}}{2 \pi}} \exp \left(-\frac{1}{2}\left(1-\alpha^{2}\right) x^{2}\right)
$$

Answer 14. The initial distribution is the distribution of X_{0}, and thus is the standard normal distribution $\mathcal{N}(0,1)$, with density

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)
$$

for all $x \in \mathbb{R}$. The transition density is the the density of X_{n+1}, given $X_{n}=x$. Since $X_{n+1} \sim$ $\mathcal{N}(0,1)$, irrespective of the value of X_{n}, we find the transition density as

$$
p(x, y)=\varphi(y)
$$

for all $x, y \in \mathbb{R}$.
Answer 15. The general formula for the acceptance probability is

$$
\alpha(x, y)=\min \left(1, \frac{\pi(y) p(y, x)}{\pi(x) p(x, y)}\right)
$$

The target density π is given to be

$$
\pi(x)=\frac{1}{Z} \sin (x)^{2} \exp (-|x|)
$$

and we are considering three different transition densities p.
a) Here we have $p(x, y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-(y-x)^{2} / 2\right)$. In this case, we have $p(x, y)=p(y, x)$ and thus

$$
\alpha(x, y)=\min \left(1, \frac{\pi(y)}{\pi(x)}\right)=\min \left(1, \frac{\sin (y)^{2} \exp (-|y|)}{\sin (x)^{2} \exp (-|x|)}\right) .
$$

This is an example of the Random Walk Metropolis algorithm.
b) Here we have $p(x, y)=1_{[x-1, x+2]}(y) / 3$ and thus

$$
\alpha(x, y)=\min \left(1, \frac{\sin (y)^{2} \exp (-|y|) 1_{[y-1, y+2]}(x)}{\sin (x)^{2} \exp (-|x|) 1_{[x-1, x+2]}(y)}\right) .
$$

Since y is always taken to be a proposal, sampled with density $p(x, \cdot)$, we always have $y \in[x-1, x+2]$ and we can simplify the denominator to

$$
\alpha(x, y)=\min \left(1, \frac{\sin (y)^{2} \exp (-|y|) 1_{[y-1, y+2]}(x)}{\sin (x)^{2} \exp (-|x|)}\right)
$$

c) Here we have $p(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-y^{2} / 2\right)$ and thus

$$
\alpha(x, y)=\min \left(1, \frac{\sin (y)^{2} \exp (-|y|) \exp \left(-x^{2} / 2\right)}{\sin (x)^{2} \exp (-|x|) \exp \left(-y^{2} / 2\right)}\right)
$$

This is an example of the independence sampler.

