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Answer 12. In a transition matrix, the rows must sum to 1 and therefore we need α1 = 0.6,
α2 = 0.1 and α3 = 0.6. From lectures we know that the condition for π to be a stationary
distribution is π⊤P = π⊤, i.e.

(π1 π2 π3)

0.4 0.6 0.0
0.3 0.1 0.6
0.0 0.6 0.4

 = (π1 π2 π3). (1)

Together with the condition that π is a probability vector, we get a system of four equations:
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π1 + π2 + π3 = 1.

We have four equations for three unknowns, so one of the equations is redundant. Leaving out
any of the first three equations, we can solve this system to get

π1 = 1/5, π2 = 2/5, π3 = 2/5.

An alternative way to obtain the same solution is to observe the fact that equation (1) implies
that π is an eigenvector of P⊤ with eigenvalue 1. Using R we get the same result as above:

> P <- matrix(c(.4, .3, 0, .6, .1, .6, 0, .6, .4), 3, 3)
> P

[,1] [,2] [,3]
[1,] 0.4 0.6 0.0
[2,] 0.3 0.1 0.6
[3,] 0.0 0.6 0.4
> eigen(t(P))
eigen() decomposition
$values
[1] 1.0 -0.5 0.4

$vectors
[,1] [,2] [,3]

[1,] 0.3333333 0.2672612 7.071068e-01
[2,] 0.6666667 -0.8017837 -3.561232e-16
[3,] 0.6666667 0.5345225 -7.071068e-01

> pi <- eigen(t(P))$vectors[,1]
> pi / sum(pi)
[1] 0.2 0.4 0.4

Answer 13. Rather than working with the definition of a stationary density directly, for an
AR(1) process it is easier to use the fact that all Xk are normally distributed, and to just find the
mean and variance which make the process stationary. From this we can then get the required
density.

Assume that Xk−1 ∼ N (µ, σ2). Then

E(Xk) = E
(
αXk−1 + εk

)
= αE(Xk−1) + E(εk) = αµ+ 0 = αµ
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and
Var(Xk) = Var

(
αXk−1 + εk

)
= α2 Var(Xk−1) + Var(εk) = α2σ2 + 1.

If the process is stationary, Xk has the same distribution as Xk−1, and in particular has the same
mean and variance. From this we get the two equations µ = αµ and σ2 = α2σ2+1. Solving these
equations, we find µ = 0 and σ2 = 1/(1− α2). Thus the stationary distribution of the process is
N
(
0, 1/(1− α2)

)
, with density

π(x) =

√
1− α2

2π
exp

(
−1

2
(1− α2)x2

)
.

Answer 14. The initial distribution is the distribution of X0, and thus is the standard normal
distribution N (0, 1), with density

φ(x) =
1√
2π

exp
(
−x2/2

)
for all x ∈ R. The transition density is the the density of Xn+1, given Xn = x. Since Xn+1 ∼
N (0, 1), irrespective of the value of Xn, we find the transition density as

p(x, y) = φ(y)

for all x, y ∈ R.

Answer 15. The general formula for the acceptance probability is

α(x, y) = min
(
1,

π(y)p(y, x)

π(x)p(x, y)

)
.

The target density π is given to be

π(x) =
1

Z
sin(x)2 exp(−|x|)

and we are considering three different transition densities p.

a) Here we have p(x, y) = 1√
2π

exp
(
−(y − x)2/2

)
. In this case, we have p(x, y) = p(y, x) and

thus

α(x, y) = min
(
1,

π(y)

π(x)

)
= min

(
1,

sin(y)2 exp(−|y|)
sin(x)2 exp(−|x|)

)
.

This is an example of the Random Walk Metropolis algorithm.

b) Here we have p(x, y) = 1[x−1,x+2](y)/3 and thus

α(x, y) = min
(
1,

sin(y)2 exp(−|y|)1[y−1,y+2](x)

sin(x)2 exp(−|x|)1[x−1,x+2](y)

)
.

Since y is always taken to be a proposal, sampled with density p(x, · ), we always have
y ∈ [x− 1, x+ 2] and we can simplify the denominator to

α(x, y) = min
(
1,

sin(y)2 exp(−|y|)1[y−1,y+2](x)

sin(x)2 exp(−|x|)

)
.

c) Here we have p(y) = 1√
2π

exp
(
−y2/2

)
and thus

α(x, y) = min
(
1,

sin(y)2 exp(−|y|) exp(−x2/2)

sin(x)2 exp(−|x|) exp(−y2/2)

)
.

This is an example of the independence sampler.
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