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Answer 12. In a transition matrix, the rows must sum to 1 and therefore we need a; = 0.6,
as = 0.1 and ag = 0.6. From lectures we know that the condition for 7 to be a stationary
distribution is 7" P =7
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Together with the condition that 7 is a probability vector, we get a system of four equations:
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Toﬂz + EWS = T3,

’/T1+’/T2+’/T3:1.

We have four equations for three unknowns, so one of the equations is redundant. Leaving out
any of the first three equations, we can solve this system to get

7'1'1:1/57 7'1'2:2/57 7T3:2/5.

An alternative way to obtain the same solution is to observe the fact that equation (1) implies
that 7 is an eigenvector of P with eigenvalue 1. Using R we get the same result as above:

> P <- matrix(c(.4, .3, 0, .6, .1, .6, 0, .6, .4), 3, 3)

> P

[,11 [,2] [,3]

[1,] 0.4 0.6 0.0

[2,] 0.3 0.1 0.6

[3,] 0.0 0.6 0.4

> eigen(t(P))

eigen() decomposition

$values

[1] 1.0 -0.5 0.4

$vectors

[,1] [,2] [,3]
[1,] 0.3333333 0.2672612 7.071068e-01
[2,] 0.6666667 -0.8017837 -3.561232e-16
[3,]1 0.6666667 0.5345225 -7.071068e-01

> pi <- eigen(t(P))$vectors[,1]
> pi / sum(pi)
[1] 0.2 0.4 0.4

Answer 13. Rather than working with the definition of a stationary density directly, for an
AR(1) process it is easier to use the fact that all X} are normally distributed, and to just find the
mean and variance which make the process stationary. From this we can then get the required
density.

Assume that X;_1 ~ N (p,0?). Then

E(X) = E(an,l + sk) =aB(Xk_1)+E(egp) =aun+0=au
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and
Var(Xy) = Var(an,l + sk) =a? Var(Xy_1) + Var(eg) = a’o? + 1.

If the process is stationary, X has the same distribution as X;_1, and in particular has the same
mean and variance. From this we get the two equations u = ap and 02 = a?0? 4 1. Solving these
equations, we find 4 = 0 and 02 = 1/(1 — o?). Thus the stationary distribution of the process is
N(0,1/(1 — a?)), with density

m(x) = ! ;Wog exp(—%(l - a2)m2).

Answer 14. The initial distribution is the distribution of Xy, and thus is the standard normal
distribution A(0, 1), with density

1
p(z) = W

for all z € R. The transition density is the the density of X, 41, given X,, = z. Since X,, 41 ~
N(0,1), irrespective of the value of X,,, we find the transition density as

exp(—2°/2)

p(z,y) = »(y)

for all z,y € R.

Answer 15. The general formula for the acceptance probability is

m(y)p(y, ) ) .

a(z,y) = min(l, m(x)p(x,y)

The target density 7 is given to be
1. 9
m(z) = Z sin(z)” exp(—|z|)
and we are considering three different transition densities p.

a) Here we have p(x,y) = \/% exp(—(y — x)?/2). In this case, we have p(z,y) = p(y,z) and

thus
T . sin(y)? exp(—
a(z,y) = min(L WEZ;) = mln(l, sinéz;Q QXEE—:ZB )

This is an example of the Random Walk Metropolis algorithm.

b) Here we have p(x,y) = 1jz—1,042)(y)/3 and thus

sin(y)? exp(—|y|)17,_ x

oz, y) = min(L . (y)2 P(—lyD1y—1,y+2)( ))_
sin(x)? exp(—[#[)1z—1,2+2)(y)

Since y is always taken to be a proposal, sampled with density p(z, -), we always have

y € [x — 1,2 + 2] and we can simplify the denominator to

sin(y)? exp(—|y)1y—1,y+2 (%) )

a(z,y) = min(l, sin(x)? exp(—|z|)

¢) Here we have p(y) = \/% exp(—y?/2) and thus

sin(y)? exp(—|y) exp(—2?/2) )
sin(x)2 exp(—|z]) exp(—y?/2) /)

This is an example of the independence sampler.

a(z,y) = min(l,



