MATH5835M Statistical Computing
 Exercise Sheet 5

https://www1.maths.leeds.ac.uk/~voss/2023/MATH5835M/
Jochen Voss, J.Voss@leeds.ac.uk
2023/24, semester 1

This does not count towards your final mark, the questions are for self-study only.

Exercise 12. For $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ consider the matrix

$$
P=\left(\begin{array}{lll}
0.4 & \alpha_{1} & 0.0 \\
0.3 & \alpha_{2} & 0.6 \\
0.0 & \alpha_{3} & 0.4
\end{array}\right)
$$

For which values of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is P a transition matrix? Find a probability vector $\pi \in \mathbb{R}^{3}$ which is a stationary distribution of the Markov chain with transition matrix P.

Exercise 13. For $\alpha \in(-1,1)$, consider the $\operatorname{AR}(1)$ process given by

$$
X_{k}=\alpha X_{k-1}+\varepsilon_{k}
$$

for all $k \in \mathbb{N}$ and $X_{0}=0$, where $\varepsilon_{k} \sim \mathcal{N}(0,1)$ are i.i.d. This process is a Markov Chain with state space \mathbb{R}. Write down the transition density $p(x, y)$ and find the stationary density $\pi(x)$ for this Markov Chain.

Exercise 14. Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of independent, $\mathcal{N}(0,1)$-distributed random variables. We can consider this sequence to be a Markov chain. What is the transition density and the density of the initial distribution for this Markov chain?

Exercise 15. Consider the Metropolis-Hastings algorithm with target density

$$
\pi(x)=\frac{1}{Z} \sin (x)^{2} \exp (-|x|)
$$

for all $x \in \mathbb{R}$, where Z is the normalising constants. For the following proposal distributions, determine the formula for the acceptance probability $\alpha(x, y)$:
a) $Y_{n+1}=X_{n}+\varepsilon_{n}$ where $\varepsilon_{n} \sim \mathcal{N}(0,1)$, independently of X_{0}, \ldots, X_{n}.
b) $Y_{n+1}=X_{n}+\varepsilon_{n}$ where $\varepsilon_{n} \sim \mathcal{U}[-1,2]$, independently of X_{0}, \ldots, X_{n}.
c) $Y_{n+1} \sim \mathcal{N}(0,1)$, independently of X_{0}, \ldots, X_{n}.

