MATH5835M Statistical Computing Exercise Sheet 4

https://www1.maths.leeds.ac.uk/~voss/2023/MATH5835M/ Jochen Voss, J.Voss@leeds.ac.uk 2023/24, semester 1

This does not count towards your final mark, the questions are for self-study only.

Exercise 9. In this question, we will derive a Monte Carlo method to estimate the value of an integral over the whole real line. For this, let $f: \mathbb{R} \to \mathbb{R}$ be given. Our aim is to estimate $\int_{-\infty}^{\infty} f(x) dx$.

a) Let $X_j \sim \mathcal{N}(0, \sigma^2)$ be i.i.d. and

$$\tilde{Z}_N = \frac{1}{N} \sum_{j=1}^{N} f(X_j).$$

Determine the expectation $\mathbb{E}(\tilde{Z}_N)$, as an integral.

b) In terms of f, find a function $g: \mathbb{R} \to \mathbb{R}$ such that

$$Z_N = \frac{1}{N} \sum_{j=1}^{N} g(X_j)$$

has expectation $\mathbb{E}(Z_N) = \int_{-\infty}^{\infty} f(x) dx$.

c) Determine $MSE(Z_N)$.

Exercise 10. Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(3,2)$. A fair coin is tossed, if head shows we define Z = X and otherwise Z = Y. Use R to generate 1000 i.i.d. copies of Z and plot a histogram of the values you obtain.

Exercise 11. Let $X_1, X_2, X_3, \ldots \sim \text{Exp}(1)$ be i.i.d. Each X_i is accepted with probability $p(X_i) = \sin(X_i)^2$.

- a) Find the density of the accepted samples.
- b) Use R to generate 1000 samples from this distribution and plot a histogram of the samples.