MATH5835M Statistical Computing
 Exercise Sheet 3

https://www1.maths.leeds.ac.uk/~voss/2023/MATH5835M/
Jochen Voss, J.Voss@leeds.ac.uk
2023/24, semester 1

This does not count towards your final mark, the questions are for self-study only.

Exercise 5. [Try to do this exercise without looking up the answer in the book!] Let $X \in \mathbb{R}$ be a random variable and $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions. Consider the control variates estimator

$$
Z_{N}^{\mathrm{CV}}=\frac{1}{N} \sum_{j=1}^{N}\left(f\left(X_{j}\right)-g\left(X_{j}\right)\right)+\mathbb{E}(g(X))
$$

for $\mathbb{E}(f(X))$. Give a proof that Z_{N}^{CV} is unbiased and has mean squared error $\operatorname{MSE}\left(Z_{N}^{\mathrm{CV}}\right)=$ $\operatorname{Var}(f(X)-g(X)) / N$.

Exercise 6. Let $x_{0}=0$ and $x_{n}=\cos \left(x_{n-1}\right)$ for all $n \in \mathbb{N}$. Use R to compute x_{20}.
Exercise 7. Let $U \sim \mathcal{U}[0,1]$ and $X=1 / U^{3 / 2}$. Create 1000 samples from the distribution of X and create a meaningful histogram of your samples.

Exercise 8. The following function is a (failed) attempt to compute

$$
\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)^{2}
$$

i.e. the sum of squared increments, in R :

```
SomethingWrong <- function(x) {
        n <- length(x)
        sum <- 0
        for (i in 1:n-1) {
            sum <- sum + (x[i+1] - x[i])^2
        }
        return(sum)
}
```

When we apply this function to the vector $(1,2,3)$, we do not get the correct answer 2 , but numeric (0) instead.

```
> SomethingWrong(c(1,2,3))
numeric(0)
```

What is the mistake in the function SomethingWrong?

