MATHS5835M Statistical Computing

Exercise Sheet 2 (answers)

https://wwwl.maths.leeds.ac.uk/~voss/2023/MATH5835M/
Jochen Voss, J.Voss@leeds.ac.uk
2023/24, semester 1

Answer 4.

a) We can generate the samples using rexp() as follows:
n <- 10
mu <- 2
X <- rexp(n, rate = 1/mu)

Formula (1) then translates into R in a straightforward way: mean(X) computes z, the call
sqrt(n) gives v/n and sd(X) computes the sample standard deviation s:

T <- sqrt(n) * (mean(X) - muw) / sd(X)

b) We can use a loop of the form for (i in 1:N) {...} to execute the code from part (a) N
times. For each iteration of the loop, we need to generate samples using rexp() and then
compute 7. Finally, we need to store the computed T-values in a vector (res in the code
below). Here we write the code as an R function (see appendix B.3.2 of the book), so that
it is easy to re-use:

gen.T.sample <- function(N, n=10, mu=2) {
res <- numeric(N)
for (i in 1:N) {
X <- rexp(n, rate = 1/mu)
res[i] <- sqrt(n) * (mean(X) - mu) / sd(X)

res

}

When we try out this function, we see that it indeed produces the required number of
samples:

> gen.T.sample(5)
[1] -0.5987437 0.9067587 0.1926406 -2.3336042 0.2054727

We can call gen.T.sample(100) to get N = 100 samples:

N <- 100
T <- gen.T.sample(N)

c) A type I error occurs whenever |T'| > ¢,-1(0.975). We can easily test this condition using R:

> crit <- qt(0.975, 9)

> abs(T) > crit
[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[11] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[21] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[31] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[41] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
[51] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[71] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
[81] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[91] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

> sum(abs(T) > crit)

[1] 8

So we see that 8 out of the 100 samples lead to a type I error here. To estimate the probability
of type I errors, we divide this number by N, to get % Zjvzl L7 >t,_1(0.975)"

> mean(abs(T) > crit)
[1] 0.08

and we can estimate the RMSE as

https://www1.maths.leeds.ac.uk/~voss/2023/MATH5835M/
mailto:J.Voss@leeds.ac.uk

d)

> sqrt(var(abs(T) > crit) / N)
[1] 0.02726599

As a rule of thumb, the true value is likely to be within two RMSEs of the estimate, so we
will likely have p > 0.080 — 2 - 0.027 = 0.026. Thus, N = 100 is too small to conclude that
p > 0.05. Since N is still relatively small, the values of the estimate and the RMSE are not
very precise, and we should not try to get the required N from these values. Instead, we
increase NV by a factor of 100 and try again:

> N <- 10000

> T <- gen.T.sample(N)

> mean(abs(T) > crit)

[1] 0.0991

> sqrt(var(abs(T) > crit) / N)
[1] 0.002988112

> 0.0991 - 2 *x 0.002988

[1] 0.093124

Clearly, this N is now large enough, and since the computation takes less than a second on
my laptop, there is no need to search for smaller N which also would do the job.

We can use a loop to repeat the code above for different values of n to generate the required
plot. The smallest possible value of n is n = 2, since for smaller n the sample standard
deviation (in the definition of t) is not defined. We also need to be careful to re-compute
the critical value for every n:
n <- c(2, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
prob <- numeric(length(n))
rmse <- numeric(length(n))
for (i in seq_along(n)) {
ni <- n[i]
crit <- qt(0.975, ni - 1)
T <- gen.T.sample(N, ni)
prob[i] <- mean(abs(T) > crit)
rmse[i] <- sqrt(var(abs(T) > crit) / N)
}
plot(n, prob, ylim = c(0, 0.12), ylab = "P(type I error)")
arrows(n, yO = prob - 2xrmse, yl = prob + 2*rmse,
code = 3, angle = 90, length = .05)
abline(h = 0.05, lty=2)

(see figure 1.) We (mis-)use the arrows() function to draw error bars, indicating the range
of plus/minus two RMSEs. From the error bars we see that the peak around n = 10 is likely
real, whereas the smaller peak around n = 70 may be an artefact of the Monte-Carlo error.
It is known that when n goes to oo, the probability of type I errors for this ¢-test converges
to 5%; this is consistent with the markers in the plot getting closer to the dashed horizontal
line as n increases.

N
o
= 3 §
(@] .
5 ¢ 3 3 3
P . ¢ 3 [3 3
2 S | e :
a S 4
o
8 |
© T | | | | I
0 20 40 60 80 100
n

Figure 1. The estimated probability of type I errors as a function of n. The intervals indicated
by the error bars have a half-width of two root mean-squared errors. See question 4(e) for details.

